Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,t...Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.展开更多
The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste g...The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.展开更多
Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed...Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.展开更多
Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been construc...Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.展开更多
Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic p...Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.展开更多
Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visi...Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visible light.The Er@K-C_(3)N_(4)/UiO-66-NH_(2) catalyst was synthesized using a straight-forward hydrothermal technique,and exhibited exceptional efficiency in the photocatalytic oxidation of furfural to furoic acid.The catalyst was thoroughly characterized,confirming the effective adjustment of the band gap energy of Er@K-C_(3)N_(4)/UiO-66-NH_(2).Upon the optimized reaction conditions,the conversion rate of furfural reached 89.3%,with a corresponding yield of furoic acid at 79.8%.The primary reactive oxygen species was identified as·O_(2)^(-) from ESR spectra and scavenger tests.The incorporation of Er and K into the catalyst enhanced the photogenerated carriers transfer rate,hence increasing the separating efficiency of photogenerated electron-hole pairs.This study expands the potential applications of rare earth element doped g-C_(3)N_(4) in the photocatalytic selective oxidation of furfurans.展开更多
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ...The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.展开更多
Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust ve...Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.展开更多
A novel heterogeneous catalytic ozonation process in water treatment was studied, with a copper-loaded activated carbon (Cu/AC) that was prepared by an incipient wetness impregnation method at low temperature and te...A novel heterogeneous catalytic ozonation process in water treatment was studied, with a copper-loaded activated carbon (Cu/AC) that was prepared by an incipient wetness impregnation method at low temperature and tested as a catalyst in the ozonation of phenol and oxalic acid. Cu/AC was characterized using XRD, BET and SEM techniques. Compared with ozonation alone, the presence of Cu/AC in the ozonation processes significantly improves the degradation of phenol or oxalic acid. With the introduction of the hydroxyl radical scavenger, i.e., turt-butanol alcohol (t-BuOH), the degradation efficiency of both phenol and oxalic acid in the Cu/AC catalyzed ozonation process decreases by 22% at 30 min. This indicates that Cu/AC accelerates ozone decomposition into certain concentration of hydroxyl radicals. The amount of Cu(II ) produced during the reaction of Cu/AC-catalyzed ozonation of phenol or oxalic acid is very small, which shows that the two processes are both heterogeneous catalytic ozonation reactions.展开更多
The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried ...The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.展开更多
Nd-Co 3O 4 catalysts were prepared by hydrothermal and co-precipitation methods to catalyze the decomposition of N 2O. The catalysts prepared by hydrothermal method showed higher activity. Among the hydrothermal Nd-Co...Nd-Co 3O 4 catalysts were prepared by hydrothermal and co-precipitation methods to catalyze the decomposition of N 2O. The catalysts prepared by hydrothermal method showed higher activity. Among the hydrothermal Nd-Co 3O 4 catalysts, the catalyst with Nd/Co molar ratio of 0.01 had higher activity. 0.01Nd-Co 3O 4 catalyst was then impregnated by K 2CO 3 solution to prepare K-modified catalyst. The catalysts were characterized by means of X-ray diffraction (XRD), nitrogen physisorption, scanning electrons microscopy (SEM), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H 2-TPR), and oxygen temperature-programmed desorption (O 2-TPD). The results show that Nd-Co 3O 4 and K-modified catalysts exhibit spinel structure. In contrast to bare Nd-Co 3O 4, the K-modified catalyst with higher activity is due to its weaker strength of Co-O bond and easier desorption of surface oxygen species. In addition, over 90% conversion of N 2O can be reached over 0.02K/0.01Nd-Co 3O 4 at 350 ℃ for 40 h under the co-presence of oxygen and steam in feed gases.展开更多
Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal...Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).展开更多
In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient....In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.展开更多
A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbo...A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.展开更多
Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. ...Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnOx/γ-Al2O3 catalysts is 300-400 ℃ . The catalysts maintain nearly 100% NO conversion at 350 ℃. The NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnOx/γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process.展开更多
Chlorinated volatile organic compounds(CVOCs)are widely used in industry as solvents intermediates,which are highly toxic and a contributor for secondary organic aerogels,tropospheric ozone and photochemical smog[1].M...Chlorinated volatile organic compounds(CVOCs)are widely used in industry as solvents intermediates,which are highly toxic and a contributor for secondary organic aerogels,tropospheric ozone and photochemical smog[1].Many technologies have been developed to eliminate CVOCs emission.Catalytic combustion is regarded as one of the most economical and reliable technologies.The development of catalytic combustion system includes exploring reaction devices,reaction processes and catalysts,among which the key task is to develop highperformance catalysts.展开更多
A polarographic catalytic wave of cobalt in the substrate solution (pH=8.5) of diacetyldioxime potassium pyrophosphate ammonium chloride was studied and a new method for rapid determination of trace cobalt in complex ...A polarographic catalytic wave of cobalt in the substrate solution (pH=8.5) of diacetyldioxime potassium pyrophosphate ammonium chloride was studied and a new method for rapid determination of trace cobalt in complex zinc electrolyte solution was developed. The results show that there is a very sensitive catalytic wave of cobalt at 1.23 V. At least three hundred thousand fold Zn 2+ does not affect the determination of cobalt. The method is easy to operate and rapid, and when the signal to noise rate equals 2, the detection limit is 6×10 -9 mol·L -1 . A good linear relationship exists between the concentration of cobalt within 0.001 ~3.0 μg·mL -1 and the peak current. The method has successfully been used in the determination of trace cobalt in complex solution of the workshop for electrolyzing zinc.展开更多
B3LYP/6-31G(d,p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound.Phenol,toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst.T...B3LYP/6-31G(d,p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound.Phenol,toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst.The pathways of tar compound radical absorbed by CaO were determined firstly through comparing enthalpy changes of the absorption,and then Mulliken population changes were analyzed.The results show that the absorption of tar model compound radical and CaO is an exothermic reaction.Formation of C—O—Ca is more easily than that of C—Ca—O and formation of Caromatic—Caromatic—Ca—O is more easily than that of Caromatic—C(O)—Ca—O.The C—C bond Mulliken populations in tar model compound radicals are reduced by 11.9%,10.5% and 15.5% in the case of a hydrogen atom removed,and those are 15.7%,14.3% and 16.3% in the case of two hydrogen atoms removed through the absorption of CaO.Catalytic ability of CaO acting on the tar model compound is in an order of phenol>benzene>toluene.展开更多
Cation ion-exchange resin particles (CERP)/polyethersulfone (PES) hybrid catalytic membranes were prepared by immerse phase inversion for the esterification of different free fatty acids (FFAs) (such as, dodeca...Cation ion-exchange resin particles (CERP)/polyethersulfone (PES) hybrid catalytic membranes were prepared by immerse phase inversion for the esterification of different free fatty acids (FFAs) (such as, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecadienoic acid) with methanol. The membranes were characterized by SEM, ion-exchange capacity and swelling degree test. It is found that dodecanoic acid has the highest FFAs conversion among the four acids for its stronger acidic and reactivity. Different effects of membrane annealing temperature, reaction temperature, molar ratio of methanol to FFAs and catalytic membrane loading on the esterification were investigated by the esterification of dodecanoic acid with methanol. The dodecanoic acid conversion reaches 97.5% trader the optimal condition when the esterification reaction lasted for 8 h.展开更多
文摘Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.
基金supported by the National Natural Science Foundation of China(22178295,21706225)Natural Science Foundation of Hunan Province(2025JJ50085)Hunan Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization.
文摘The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature.
文摘Three zincand cobaltcoordination polymers,namely{[Zn_(2)(μ_(6)-adip)(phen)_(2)]·4H_(2)O}_(n)(1),{[Co_(2)(μ_(6)-adip)(bipy)_(2)]·4H_(2)O}_(n)(2),and[Co_(2)(μ4-adip)(μ-bpa)_(2)]_(n)(3)have been constructed hydrothermally using H4adip(H4adip=5,5′-azanediyldiisophthalic acid),phen(phen=1,10-phenanthroline),bipy(bipy=2,2′-bipyridine),bpa(bpa=bis(4-pyridyl)amine),and zinc and cobalt chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffrac-tion analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the orthorhom-bic system Pnna(1 and 2)or P21212(3)space groups.All compounds exhibit 3D frameworks.The catalytic perfor-mances in the Henry reaction of these compounds were investigated.Compound 3 exhibited an effective catalytic activity in the Henry reaction at 70℃.CCDC:2339391,1;2339392,2;2339393,3.
文摘Three zinc(Ⅱ),cobalt(Ⅱ),and nickel(Ⅱ)coordination polymers,namely[Zn(μ^(3-)cpna)(μ-dpea)_(0.5)]_(n)(1),[Co(μ^(3-)cpna)(μ-dpey)_(0.5)]_(n)(2),and[Ni(μ^(3-)cpna)(μ-dpey)_(0.5)(H_(2)O)]_(n)(3),have been constructed hydrothermally using H_(2)cpna(5-(4-carboxyphenoxy)nicotinic acid),dpea(1,2-di(4-pyridyl)ethane),dpey(1,2-di(4-pyridyl)ethylene),and zinc,cobalt,and nickel chlorides at 160℃.The products were isolated as stable crystalline solids and were characterized by IR spectra,elemental analyses,thermogravimetric analyses,and single-crystal X-ray diffraction analyses.Single-crystal X-ray diffraction analyses revealed that three compounds crystallize in the triclinic system,space group P1.Compounds 1-3 show 2D layer structures.The catalytic activities in the Knoevenagel condensation reaction of these compounds were investigated.Compounds 1 and 2 exhibit effective catalytic activities in the Knoevenagel condensa-tion reaction at room temperature.For this reaction,various parameters were optimized,followed by the investiga-tion of the substrate scope.CCDC:2335676,1;2335677,2;2335678,3.
文摘Because of its high purity and excellent orientation, mesophase pitch is a superior precursor for high-performance car-bon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperat-ures is more favorable for synthesizing mesophase pitch, because it circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. The reaction is gentle and can be easily controlled. It has the potential to significantly im-prove the yield of mesophase pitch and easily introduce naphthenic characteristics into the molecules, catalytic polycondensation is therefore a preferred method of synthesizing highly spinnable mesophase pitch. This review provides a synopsis of the selective pre-treatment of the raw materials to prepare different mesophase pitches, and explains the reaction mechanism and associated research advances for different catalytic systems in recent years. Finally, how to manufacture high-quality mesophase pitch by using a cata-lyst-promoter system is summarized and proposed, which may provide a theoretical basis for the future design of high-quality pitch molecules.
基金supported by Natural Science Foundation of Shandong Province(ZR2022MB049)National Natural Science Foundation of China(22078174)。
文摘Biomass-derived platform molecules,such as furfural,are abundant and renewable feedstock for valuable chemical production.It is critical to synthesize highly efficient photocatalysts for selective oxidation under visible light.The Er@K-C_(3)N_(4)/UiO-66-NH_(2) catalyst was synthesized using a straight-forward hydrothermal technique,and exhibited exceptional efficiency in the photocatalytic oxidation of furfural to furoic acid.The catalyst was thoroughly characterized,confirming the effective adjustment of the band gap energy of Er@K-C_(3)N_(4)/UiO-66-NH_(2).Upon the optimized reaction conditions,the conversion rate of furfural reached 89.3%,with a corresponding yield of furoic acid at 79.8%.The primary reactive oxygen species was identified as·O_(2)^(-) from ESR spectra and scavenger tests.The incorporation of Er and K into the catalyst enhanced the photogenerated carriers transfer rate,hence increasing the separating efficiency of photogenerated electron-hole pairs.This study expands the potential applications of rare earth element doped g-C_(3)N_(4) in the photocatalytic selective oxidation of furfurans.
文摘The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants.
文摘Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.
基金Project(40973074) supported by the National Natural Science Foundation of China
文摘A novel heterogeneous catalytic ozonation process in water treatment was studied, with a copper-loaded activated carbon (Cu/AC) that was prepared by an incipient wetness impregnation method at low temperature and tested as a catalyst in the ozonation of phenol and oxalic acid. Cu/AC was characterized using XRD, BET and SEM techniques. Compared with ozonation alone, the presence of Cu/AC in the ozonation processes significantly improves the degradation of phenol or oxalic acid. With the introduction of the hydroxyl radical scavenger, i.e., turt-butanol alcohol (t-BuOH), the degradation efficiency of both phenol and oxalic acid in the Cu/AC catalyzed ozonation process decreases by 22% at 30 min. This indicates that Cu/AC accelerates ozone decomposition into certain concentration of hydroxyl radicals. The amount of Cu(II ) produced during the reaction of Cu/AC-catalyzed ozonation of phenol or oxalic acid is very small, which shows that the two processes are both heterogeneous catalytic ozonation reactions.
文摘The catalytic proficiency of three MONs for AP thermal decomposition was studied in this work.A chemical co-precipitation method was used for synthesis of MONs(CuZnO,CoZnO,and NiZnO)and their characterization carried out by utilizing XRD,FTIR,and SEM.The TGA/DSC technique was employed for the investigation of the catalytic proficiency of MONs on the AP.The DSC data were used for measuring activation energy of catalyzed AP by using Ozawa,Kissinger,and Starink method.The MONs were much sensitive for AP decomposition,and the performance of AP decomposition was further improved.Among all the MONs,the CuZnO exhibits higher catalytic action than others and decomposition temperature of AP is descending around 117℃ by CuZnO.The reduction in the activation energy was noticed after the incorporation of MONs in AP.
基金The project was supported by the Shandong Natural Science Foundation (ZR2017MB020)Graduate Innovation Foundation of Yantai University (YDYB1909).
文摘Nd-Co 3O 4 catalysts were prepared by hydrothermal and co-precipitation methods to catalyze the decomposition of N 2O. The catalysts prepared by hydrothermal method showed higher activity. Among the hydrothermal Nd-Co 3O 4 catalysts, the catalyst with Nd/Co molar ratio of 0.01 had higher activity. 0.01Nd-Co 3O 4 catalyst was then impregnated by K 2CO 3 solution to prepare K-modified catalyst. The catalysts were characterized by means of X-ray diffraction (XRD), nitrogen physisorption, scanning electrons microscopy (SEM), X-ray photoelectron spectroscopy (XPS), hydrogen temperature-programmed reduction (H 2-TPR), and oxygen temperature-programmed desorption (O 2-TPD). The results show that Nd-Co 3O 4 and K-modified catalysts exhibit spinel structure. In contrast to bare Nd-Co 3O 4, the K-modified catalyst with higher activity is due to its weaker strength of Co-O bond and easier desorption of surface oxygen species. In addition, over 90% conversion of N 2O can be reached over 0.02K/0.01Nd-Co 3O 4 at 350 ℃ for 40 h under the co-presence of oxygen and steam in feed gases.
基金Project(2018YFC1802204)supported by the National Key R&D Program of ChinaProject(51634010)supported by the Key Project of National Natural Science Foundation of ChinaProject(2018SK2026)supported by the Key R&D Program of Hunan Province,China。
文摘Magnetic Fe3 O4@Cu/Ce microspheres were successfully prepared by one-step solvothermal approach and further utilized to remediate toxic arsenic(As(Ⅲ)) pollution. The effects of Cu/Ce elements co-doping on the crystal structure, catalytic oxidation and adsorption behaviors of magnetic microspheres were researched systematically. The results showed that with the aid of Cu/Ce elements, the grain size reduced, lattice defects increased, and the oxygen vacancies and surface hydroxyl groups were improved. Therefore, Cu/Ce elements endowed magnetic Fe3 O4@Cu/Ce microspheres with excellent As(III) removal performance, whose maximum adsorption capacity reached 139.19 mg/g. The adsorption mechanism mainly involved catalytic oxidant co-adsorption. This research developed a feasible strategy for the preparation of high efficiency magnetic adsorbent to enhance the removal of As(Ⅲ).
基金Project(51776062) supported by the National Natural Science Foundation of ChinaProject(201208430262) supported by the National Studying Abroad Foundation Project of the China Scholarship Council
文摘In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.
基金Projects (50776037,50721005) supported by the National Natural Science Foundation of China
文摘Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnOx/γ-Al2O3 catalysts is 300-400 ℃ . The catalysts maintain nearly 100% NO conversion at 350 ℃. The NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnOx/γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process.
文摘Chlorinated volatile organic compounds(CVOCs)are widely used in industry as solvents intermediates,which are highly toxic and a contributor for secondary organic aerogels,tropospheric ozone and photochemical smog[1].Many technologies have been developed to eliminate CVOCs emission.Catalytic combustion is regarded as one of the most economical and reliable technologies.The development of catalytic combustion system includes exploring reaction devices,reaction processes and catalysts,among which the key task is to develop highperformance catalysts.
基金The Science and Research Foundation of Education Commission of Hunan Province!(No.98C118)
文摘A polarographic catalytic wave of cobalt in the substrate solution (pH=8.5) of diacetyldioxime potassium pyrophosphate ammonium chloride was studied and a new method for rapid determination of trace cobalt in complex zinc electrolyte solution was developed. The results show that there is a very sensitive catalytic wave of cobalt at 1.23 V. At least three hundred thousand fold Zn 2+ does not affect the determination of cobalt. The method is easy to operate and rapid, and when the signal to noise rate equals 2, the detection limit is 6×10 -9 mol·L -1 . A good linear relationship exists between the concentration of cobalt within 0.001 ~3.0 μg·mL -1 and the peak current. The method has successfully been used in the determination of trace cobalt in complex solution of the workshop for electrolyzing zinc.
基金Project(51276023)supported by the National Natural Science Foundation of China
文摘B3LYP/6-31G(d,p) method was used to investigate the catalytic cracking mechanism of biomass tar model compound.Phenol,toluene and benzene were selected as the tar model compounds and CaO was selected as the catalyst.The pathways of tar compound radical absorbed by CaO were determined firstly through comparing enthalpy changes of the absorption,and then Mulliken population changes were analyzed.The results show that the absorption of tar model compound radical and CaO is an exothermic reaction.Formation of C—O—Ca is more easily than that of C—Ca—O and formation of Caromatic—Caromatic—Ca—O is more easily than that of Caromatic—C(O)—Ca—O.The C—C bond Mulliken populations in tar model compound radicals are reduced by 11.9%,10.5% and 15.5% in the case of a hydrogen atom removed,and those are 15.7%,14.3% and 16.3% in the case of two hydrogen atoms removed through the absorption of CaO.Catalytic ability of CaO acting on the tar model compound is in an order of phenol>benzene>toluene.
基金Project(ZR2011BL005) supported by the Natural Science Foundation of Shandong Province,China
文摘Cation ion-exchange resin particles (CERP)/polyethersulfone (PES) hybrid catalytic membranes were prepared by immerse phase inversion for the esterification of different free fatty acids (FFAs) (such as, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecadienoic acid) with methanol. The membranes were characterized by SEM, ion-exchange capacity and swelling degree test. It is found that dodecanoic acid has the highest FFAs conversion among the four acids for its stronger acidic and reactivity. Different effects of membrane annealing temperature, reaction temperature, molar ratio of methanol to FFAs and catalytic membrane loading on the esterification were investigated by the esterification of dodecanoic acid with methanol. The dodecanoic acid conversion reaches 97.5% trader the optimal condition when the esterification reaction lasted for 8 h.