期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于改进的Cascade RCNN铸管字符检测算法 被引量:1
1
作者 王宇 徐福丽 +5 位作者 王怀震 崔勇 姜岩 陶晔 王译笙 张琦 《计算机集成制造系统》 EI CSCD 北大核心 2024年第11期3954-3966,共13页
由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,... 由于工业现场采集的铸管字符图像存在背景模糊、字符区域占比小、刻字位置不固定、油漆遮挡等问题,导致现有模型的检测精度难以满足工业现场的需求。针对上述问题,提出改进的Cascade RCNN铸管字符检测算法。首先对特征金字塔进行改进,提出融合小目标增强的特征金字塔(STE-FPN),利用多尺度特征融合的特征增强能力丰富铸管小目标字符的特征信息。其次引入自矫正/池化的ResNeSt(SCP-ResNeSt)作为特征提取网络,利用自矫正卷积和池化操作以提升背景复杂的铸管字符特征提取效率。最后对级联结构进行改进,引进Mask分支结构,可以自适应地检测字符区域并去除干扰区域,优化了检测结果。将改进后的算法在铸管数据集上进行测试,其平均检测精度mAP为99.1%,比原Cascade RCNN算法提高了2.3%,得到的精度表明改进后的性能优于原算法。 展开更多
关键词 铸管字符检测 背景模糊 cascade rcnn ResNeSt
在线阅读 下载PDF
基于改进Cascade RCNN的车辆目标检测方法 被引量:24
2
作者 李松江 吴宁 +1 位作者 王鹏 李海兰 《计算机工程与应用》 CSCD 北大核心 2021年第5期123-130,共8页
针对车辆目标检测过程中小目标及遮挡目标的错检、漏检问题,提出改进Cascade RCNN车辆目标检测方法。使用改进的特征金字塔将浅层信息逐层融入深层网络,增强小目标及遮挡目标特征;引入多支路空洞卷积,减少下采样过程中的特征丢失;将感... 针对车辆目标检测过程中小目标及遮挡目标的错检、漏检问题,提出改进Cascade RCNN车辆目标检测方法。使用改进的特征金字塔将浅层信息逐层融入深层网络,增强小目标及遮挡目标特征;引入多支路空洞卷积,减少下采样过程中的特征丢失;将感兴趣区域与上下文信息通过ROI Align统一尺寸后融合,增强目标特征表达。实验结果表明,改进后Cascade RCNN能更好地检测出小目标及遮挡目标,在KITTI和UA-DETRAC数据集上比Cascade RCNN提高了2.2个百分点和2.7个百分点。 展开更多
关键词 车辆检测 小目标 遮挡目标 cascade rcnn ROI Align
在线阅读 下载PDF
基于Cascade Rcnn的超声甲状腺结节检测研究 被引量:6
3
作者 章浩伟 李占齐 +1 位作者 刘颖 李淼 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第1期64-72,共9页
甲状腺超声图像由于对比度低、边缘不清晰、高噪声和周围组织复杂难辨等问题,给医生诊断甲状腺疾病造成困难。针对此问题,采用Cascade Rcnn目标检测算法,分别以ResNet50、Resnet101以及融合压缩激励注意力模块SE-ResNet50、SE-ReNet101... 甲状腺超声图像由于对比度低、边缘不清晰、高噪声和周围组织复杂难辨等问题,给医生诊断甲状腺疾病造成困难。针对此问题,采用Cascade Rcnn目标检测算法,分别以ResNet50、Resnet101以及融合压缩激励注意力模块SE-ResNet50、SE-ReNet101为主干网络,对从某三甲医院获取的1513例(其中良性结节832例,恶性结节681例)甲状腺超声图像,在专业超声科医生的指导下进行预处理,制作本次实验使用的标准coco格式数据集。采用迁移学习的方式将从Imagenet大型数据库上预训练得到的权重迁移到本次实验模型结构中,经过4个主干网络的实验结果对比,以SE-ResNet101为主干网络的Cascade Rcnn算法,在结节定位和判别方面,实现了精确率92.4%,召回率86.2%,特异性95.1%,F1值89.2%,mAP值82.4%的检测效果,对辅助医生进行甲状腺超声图像的诊断具有一定的临床指导意义。 展开更多
关键词 甲状腺超声图像 cascade rcnn 目标检测 迁移学习
在线阅读 下载PDF
基于改进Cascade RCNN的输电线路防振锤脱落检测方法 被引量:6
4
作者 阎光伟 刘润泽 +1 位作者 焦润海 何慧 《图学学报》 CSCD 北大核心 2023年第5期849-860,共12页
无人机巡检输电线路时,因拍摄角度和距离问题,容易出现被输电线遮挡和远距离拍摄的防振锤脱落目标,导致目标特征被遮挡且分辨率较低,且部分防振锤出现滑移现象,导致目标识别准确率降低。针对以上问题,提出一种基于改进Cascade RCNN的防... 无人机巡检输电线路时,因拍摄角度和距离问题,容易出现被输电线遮挡和远距离拍摄的防振锤脱落目标,导致目标特征被遮挡且分辨率较低,且部分防振锤出现滑移现象,导致目标识别准确率降低。针对以上问题,提出一种基于改进Cascade RCNN的防振锤脱落检测网络。第一,设计了对比学习网络,将正负样本与真实样本的特征进行对比学习,利用对比损失函数训练网络,使其能更加关注到被遮挡的防振锤脱落目标,提升其特征提取能力;第二,进行了分类器增强操作,筛选出网络级联结构中回归效果较好的感兴趣区域并送入最后的分类回归队列中,提高了分类器的分类能力,进而提升检测目标的分类分数;第三,设计了并行注意力机制模块,整合网络提取的特征,增大关键特征的权重,使网络关注到图像中更关键的区域;在特征金字塔中,将双线性插值方法代替为反卷积,提升特征还原能力。经交叉验证实验结果表明,改进后的模型召回率、精确率和平均精度达到了97.5%,91.0%和92.0%,相比基线模型分别提高了6.9%,28.4%和8.0%。 展开更多
关键词 输电线路 防振锤脱落 cascade rcnn 对比学习网络 并行注意力模块 分类器增强 样本相似度
在线阅读 下载PDF
基于Cascade RCNN的热轧带钢表面缺陷检测 被引量:10
5
作者 陆尧 薛林 +1 位作者 王云森 王豪 《仪表技术与传感器》 CSCD 北大核心 2023年第8期101-106,126,共7页
在工业生产过程中,带钢表面产生的缺陷影响其质量和使用性能,需要对表面缺陷进行检测,为此提出了基于深度学习的缺陷检测模型Cascade RCNN。首先,对骨干网络进行改进,将标准卷积替换为可切换空洞卷积,在不增加参数量的情况下,增大输出... 在工业生产过程中,带钢表面产生的缺陷影响其质量和使用性能,需要对表面缺陷进行检测,为此提出了基于深度学习的缺陷检测模型Cascade RCNN。首先,对骨干网络进行改进,将标准卷积替换为可切换空洞卷积,在不增加参数量的情况下,增大输出单元的感受野。其次,改变特征金字塔FPN,结构不变的情况下添加了自上而下的连接方式,同时使用特征上采样算子CARAFE替换最邻近上采样,提高了上采样精度和定位精度。最后,将损失函数换为Focal Loss,解决目标检测过程中正负样本不平衡问题。结果显示:通过以上方法的改进,检测精度有大幅提升,平均均值精度提高了7.61%,达到77.82%,各类缺陷的检测精度都得到了提高;与其他检测模型对比,模型的检测能力得到了提高,采用的改进方法有一定的应用价值。 展开更多
关键词 深度学习 缺陷检测 cascade rcnn 热轧带钢 特征上采样算子 Focal Loss
在线阅读 下载PDF
复杂大田场景中麦穗检测级联网络优化方法 被引量:14
6
作者 谢元澄 何超 +3 位作者 于增源 沈毅 姜海燕 梁敬东 《农业机械学报》 EI CAS CSCD 北大核心 2020年第12期212-219,共8页
单位种植面积的麦穗数量是评估小麦产量的关键农艺指标之一。针对农田复杂场景中存在的大量麦芒、卷曲麦叶、杂草等环境噪声、小尺寸目标和光照不均等导致的麦穗检测准确度下降的问题,提出了一种基于深度学习的麦穗检测方法(FCS RCNN)。... 单位种植面积的麦穗数量是评估小麦产量的关键农艺指标之一。针对农田复杂场景中存在的大量麦芒、卷曲麦叶、杂草等环境噪声、小尺寸目标和光照不均等导致的麦穗检测准确度下降的问题,提出了一种基于深度学习的麦穗检测方法(FCS RCNN)。以Cascade RCNN为基本网络模型,通过引入特征金字塔网络(Feature pyramid network,FPN)融合浅层细节特征和高层丰富语义特征,通过采用在线难例挖掘(Online hard example mining,OHEM)技术增加对高损失样本的训练频次,通过IOU(Intersection over union)阈值对网络模型进行阶段性融合,最后基于圆形LBP纹理特征训练一个SVM分类器,对麦穗检出结果进行复验。大田图像测试表明,FCS RCNN模型的检测精度达92.9%,识别单幅图像平均耗时为0.357 s,平均精度为81.22%,比Cascade RCNN提高了21.76个百分点。 展开更多
关键词 麦穗计数 目标检测 cascade rcnn IOU级联 复杂场景
在线阅读 下载PDF
融合高分辨率网络的雾天目标检测算法 被引量:2
7
作者 张骞 陈紫强 +1 位作者 孙宗威 赖镜安 《计算机工程与科学》 CSCD 北大核心 2023年第11期1970-1981,共12页
针对雾天场景中因图像模糊不清、目标难以分辨等原因导致错检、漏检的问题,提出了一种融合高分辨率网络的目标检测算法HR-Cascade RCNN。采用高分辨率网络HRNet作为Cascade RCNN的特征提取网络,通过不同分辨率的子网络并行连接,提取多... 针对雾天场景中因图像模糊不清、目标难以分辨等原因导致错检、漏检的问题,提出了一种融合高分辨率网络的目标检测算法HR-Cascade RCNN。采用高分辨率网络HRNet作为Cascade RCNN的特征提取网络,通过不同分辨率的子网络并行连接,提取多尺度的特征信息,减少下采样过程中的信息损失,增强目标的语义信息表示;使用CIoU损失函数替换原有的Smooth L1损失函数,引入惩罚项度量真实框与检测框之间宽高比的相关性,优化网络的收敛效果,有助于提高检测框的定位精度;最后,采用SoftNMS改进候选框选择机制,降低车辆遮挡等情况下的漏检率,提高网络检测能力。在真实雾天数据集RTTS和合成雾天数据集Foggy Cityscapes上的实验结果表明,HR-Cascade RCNN与原Cascade RCNN相比,mAP分别提高了5.9%和3%。 展开更多
关键词 雾天场景 目标检测 深度学习 cascade rcnn 高分辨率
在线阅读 下载PDF
基于级联卷积神经网络的番茄果实目标检测 被引量:23
8
作者 岳有军 孙碧玉 +1 位作者 王红君 赵辉 《科学技术与工程》 北大核心 2021年第6期2387-2391,共5页
为了使采摘机器人在收获番茄时更加精准地识别目标果实,采用改进后的Cascade RCNN网络对温室内的番茄果实进行目标检测。将Cascade RCNN网络中的非极大值抑制算法替换为Soft-NMS(soft non-maximum suppression)算法,采用适合番茄形状的... 为了使采摘机器人在收获番茄时更加精准地识别目标果实,采用改进后的Cascade RCNN网络对温室内的番茄果实进行目标检测。将Cascade RCNN网络中的非极大值抑制算法替换为Soft-NMS(soft non-maximum suppression)算法,采用适合番茄形状的锚框,增强网络对重叠果实的识别能力,与原Cascade RCNN网络相比,目标识别的准确率提高了近2%,在识别番茄果实的同时,该网络对番茄的成熟度进行了简单分类。为进一步验证网络性能,将改进网络与经典的Faster RCNN网络和YOLOv3网络进行对比。实验结果表明,改进网络能够准确地识别出番茄果实,并对成熟番茄与未成熟番茄做出区分。该方法可为温室内番茄果实的采摘提供技术支持。 展开更多
关键词 深度学习 卷积神经网络 目标检测 番茄果实 cascade rcnn
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部