OBJECTIVE Cardiotoxicity refers to drug-induced arrhythmia such as Torsades de pointes.Current single ion channel(hERG)-based assay generates-30% false results.The aim is to establish an advanced in vitro cardiotoxici...OBJECTIVE Cardiotoxicity refers to drug-induced arrhythmia such as Torsades de pointes.Current single ion channel(hERG)-based assay generates-30% false results.The aim is to establish an advanced in vitro cardiotoxicity assay by incorporating high throughput multiple cardiac ion channel screening and human cardiomyocytes-based validation.METHODS Effects of drugs were tested on multiple cell lines expressing hERG,Nav1.5 and Cav1.2 by automated patch clamping.Subsequently,the results were validated with human pluripotent stem cell(hPSC)-derived cardiomyocytes(hPSC-CMs)in which ion currents and action potentials were measured by manual patch clamping.RESULTS We have tested the cardiotoxicity of monomers extracted from various medical herbs.Mitragynine is the major bioactive compound isolated from kratom,a therapeutic herb from the rain forest of South East Asia.As a popular stimulant,it has been associated with a number of acute fatal incidences.We observed a typical torsadogenic hazard of mitragynine.It exerted a strong hERG inhibition in hERG-HEK293 cell line(IC50:5.2 μmol·L-1)and hPSC-CMs(IC50:0.91 μmol·L-1)without affecting other cardiac ion channels.Moreover,it caused a significant prolongation of action potential duration(APD)in hPSC-CMs(a-32.5%increase in APD at 50 and 90%repolarization).On the other hand,deoxylelephantopin,apotential anti-cancer reagent,demonstrated low cardiotoxicity.It exerted a week inhibition on hERG in HEK293 cells with an IC50 of 87.2 μmol·L-1,while the effective concentrations for suppressing the growth of cancer cells ranges from 2 to 20μmol·L-1.At 100μmol·L-1,deoxylelephantopin showed no effects on Cav1.2 and Nav1.5 and it failed to alter APD in hPSC-CMs.CONCLUSION We have successfully tested a newin vitro cardiotoxicity assay strategy which incorporates multiple cardiac ion channels screening and hPSC-CMs validation.This new strategy could facilitate the effective and efficient evaluation of existing and new drugs/reagents for potential pro-arrhythmic risk.展开更多
OBJECTIVE Aconitine(ACO)as the main active component in Aconitum carmichaelii debeaux(family Ranunlaceae),has highly toxicity in heart and the mechanisms are not clear yet.Paeoniflorin(PF),the main chemical ingredient...OBJECTIVE Aconitine(ACO)as the main active component in Aconitum carmichaelii debeaux(family Ranunlaceae),has highly toxicity in heart and the mechanisms are not clear yet.Paeoniflorin(PF),the main chemical ingredient in Herbaceous peony,can protect heart hurt by antioxidant,vasodilator effect and other effects.In this study,we focused on investigating the mechanism of PF reducing the cardiotoxicity of ACO.METHODS We chose H9c2 cells as experimental subject.MTT,Western blotting and real-time PCR were used to measure cell proliferation,apoptosis,ion channels and oxidative stress.RESULTS Cell proliferation in ACO+PF group was significantly increased compared with ACO group;the ratio with Bcl-2 and Bax and the level of p53 were upregulated by PF,while the level of caspase-3 was lightly reduced.The expression of SCN5A mRNA significantly was increased in ACO+PF group,while the expres⁃sion of RyR2 and Cx43 mRNA was dropped.Compared with ACO group,extracellular LDH and intracellular MDA were highly decreased,while intracellular SOD was regulated.CONCLUSION Cardiotoxicity of ACO in H9c2 cells was signifi⁃cantly decreased by PF.展开更多
OBJECTIVE Shenmai Injection(SMI)is widely used in the treatment of cardiovascular diseases,such as heart failure and myocardial ischemia.In clinic,SMI showed protective effects on doxorubicin(Dox)-induced cardiac toxi...OBJECTIVE Shenmai Injection(SMI)is widely used in the treatment of cardiovascular diseases,such as heart failure and myocardial ischemia.In clinic,SMI showed protective effects on doxorubicin(Dox)-induced cardiac toxicity.In current study,we investigate the mitochondrial protective mechanisms of SMI on Dox-induced myocardial injury.METHODS C57BL/6 mice were divided into four groups:①control group;②Dox injury group;③SMI+Dox group and dexrazoxane(DRZ)+Dox group.Dex was a positive control.Myocardial injury was evaluated by echocardiography,HE and TUNEL staining,myocardial markers measurement.H9C2 cardiomyocytes pretreatment with SMI for 24 h were exposed to Dox.Cell viability and apoptosis were measured by CCK8,Hoechst33342 staining,and Annexin V/PI staining.MitoSOX,mitochondrial membrane potential,and mitochondrial respiratory function were measured to evaluate mito⁃chondrial function.RESULTS SMI decreased mortality rate of Dox-injected mice,serum CK and CK-MB levels in vivo.SMI significantly prevented Dox-induced cardiac dysfunction and apoptosis and increased expression level of PI3K,p-Akt,and p-GSK-3β.Moreover,SMI significantly inhibited Dox-induced apoptosis,mitochondrial ROS production,and reduction of mitochondrial membrane potential in H9C2 cells.Mechanismly,the cardio-protective effect of SMI was suppressed by PI3K inhibitor LY294002.CONCLUSION SMI prevents Dox-induced cardiotoxicity and mitochondrial damage through activation of PI3K/Akt signaling pathway.展开更多
OBJECTIVE To investigate the cardioprotective effect of novel danshensu derivatives against doxorubicin(Dox)cardiotoxicity and their synergistic anti-tumor effect with Dox on breast cancer cells.METHODS Two new Danshe...OBJECTIVE To investigate the cardioprotective effect of novel danshensu derivatives against doxorubicin(Dox)cardiotoxicity and their synergistic anti-tumor effect with Dox on breast cancer cells.METHODS Two new Danshensu derivatives were synthesized by conjugation with tetramethylpyrizine and/or4-(3-thioxo-3 H-1,2-dithiol-4-yl)-benzoic acid and tested for protective effects against Dox induced cardiotoxicity in cell and zebrafish.H9c2 cardiomyoblasts were co-treated with Dox and Danshensu derivatives for 24 h and then were measured for cell viability and cytotoxicity by MTT and LDH assays.The expression levels of mitochondrial biogenesis related proteins PGC-1α,NRF-1and Nrf2 were detected by Western blotting and qPCR.Moreover,in a Dox-induced cardiotoxicity model of zebrafish,zebrafish embryos were treated with Dox for 36 h,followed by measurement of numerous ventricular function parameters including heart rate,stroke volume,cardiac output and fractional shortening.In addition,the synergistic anti-tumor effects of the Danshensu derivatives and Dox had been studied in MCF-7 breast cancer cells.The effects of the Danshensu derivatives on the cell death and metabolism of MCF-7 cells were measured using apoptosis assay and Seahorse Metabolic Analyzers respectively.RESULTS Our results showed that the Danshensu derivatives were more potent than the parental compounds in ameliorating Dox-induced cytotoxicity in H9c2 cells and significantly preserving stroke volume of heart function in Dox-treated zebrafish.Further mechanistic studies identified that the danshensu derivatives increased mitochondrial copy numbers and protein expressions of PGC-1α,NRF-1 and Nrf2 in H9c2 cells.In addition,the Danshensu derivatives enhanced Dox-induced apoptosis,and decreased glycolysis and mitochondrial function in MCF-7 tumor cells.CONCLUSION Our results revealed that two new Danshensu derivatives displayed promising cardioprotective effects against Dox induced cardiotoxicity both in vivo and in vitro,at least partially through activating mitochondrial biogenesis.Also,the new Danshensu derivatives potentiated the anticancer effects of Dox in breast tumor cells involving induction of glycolytic inhibition and mitochondrial dysfunction.展开更多
基金The project supported by National Medical Research Council(NMRC CG12Aug09&NMRC EDG10may050)National Research Foundation(NRF2008-CRP003-02)of Singapore and Ministry of Science,Technology and Innovation Malaysia(Sciencefund Grant to Tan Mei Lan)
文摘OBJECTIVE Cardiotoxicity refers to drug-induced arrhythmia such as Torsades de pointes.Current single ion channel(hERG)-based assay generates-30% false results.The aim is to establish an advanced in vitro cardiotoxicity assay by incorporating high throughput multiple cardiac ion channel screening and human cardiomyocytes-based validation.METHODS Effects of drugs were tested on multiple cell lines expressing hERG,Nav1.5 and Cav1.2 by automated patch clamping.Subsequently,the results were validated with human pluripotent stem cell(hPSC)-derived cardiomyocytes(hPSC-CMs)in which ion currents and action potentials were measured by manual patch clamping.RESULTS We have tested the cardiotoxicity of monomers extracted from various medical herbs.Mitragynine is the major bioactive compound isolated from kratom,a therapeutic herb from the rain forest of South East Asia.As a popular stimulant,it has been associated with a number of acute fatal incidences.We observed a typical torsadogenic hazard of mitragynine.It exerted a strong hERG inhibition in hERG-HEK293 cell line(IC50:5.2 μmol·L-1)and hPSC-CMs(IC50:0.91 μmol·L-1)without affecting other cardiac ion channels.Moreover,it caused a significant prolongation of action potential duration(APD)in hPSC-CMs(a-32.5%increase in APD at 50 and 90%repolarization).On the other hand,deoxylelephantopin,apotential anti-cancer reagent,demonstrated low cardiotoxicity.It exerted a week inhibition on hERG in HEK293 cells with an IC50 of 87.2 μmol·L-1,while the effective concentrations for suppressing the growth of cancer cells ranges from 2 to 20μmol·L-1.At 100μmol·L-1,deoxylelephantopin showed no effects on Cav1.2 and Nav1.5 and it failed to alter APD in hPSC-CMs.CONCLUSION We have successfully tested a newin vitro cardiotoxicity assay strategy which incorporates multiple cardiac ion channels screening and hPSC-CMs validation.This new strategy could facilitate the effective and efficient evaluation of existing and new drugs/reagents for potential pro-arrhythmic risk.
文摘OBJECTIVE Aconitine(ACO)as the main active component in Aconitum carmichaelii debeaux(family Ranunlaceae),has highly toxicity in heart and the mechanisms are not clear yet.Paeoniflorin(PF),the main chemical ingredient in Herbaceous peony,can protect heart hurt by antioxidant,vasodilator effect and other effects.In this study,we focused on investigating the mechanism of PF reducing the cardiotoxicity of ACO.METHODS We chose H9c2 cells as experimental subject.MTT,Western blotting and real-time PCR were used to measure cell proliferation,apoptosis,ion channels and oxidative stress.RESULTS Cell proliferation in ACO+PF group was significantly increased compared with ACO group;the ratio with Bcl-2 and Bax and the level of p53 were upregulated by PF,while the level of caspase-3 was lightly reduced.The expression of SCN5A mRNA significantly was increased in ACO+PF group,while the expres⁃sion of RyR2 and Cx43 mRNA was dropped.Compared with ACO group,extracellular LDH and intracellular MDA were highly decreased,while intracellular SOD was regulated.CONCLUSION Cardiotoxicity of ACO in H9c2 cells was signifi⁃cantly decreased by PF.
基金National Natural Science Foundation of China(8177401781202779+2 种基金81973624)Natural Science Foundation of Tianjin City(19JCYBJC28200)the Scientific Research Project of Tianjin Education Commission(2017KJ140)
文摘OBJECTIVE Shenmai Injection(SMI)is widely used in the treatment of cardiovascular diseases,such as heart failure and myocardial ischemia.In clinic,SMI showed protective effects on doxorubicin(Dox)-induced cardiac toxicity.In current study,we investigate the mitochondrial protective mechanisms of SMI on Dox-induced myocardial injury.METHODS C57BL/6 mice were divided into four groups:①control group;②Dox injury group;③SMI+Dox group and dexrazoxane(DRZ)+Dox group.Dex was a positive control.Myocardial injury was evaluated by echocardiography,HE and TUNEL staining,myocardial markers measurement.H9C2 cardiomyocytes pretreatment with SMI for 24 h were exposed to Dox.Cell viability and apoptosis were measured by CCK8,Hoechst33342 staining,and Annexin V/PI staining.MitoSOX,mitochondrial membrane potential,and mitochondrial respiratory function were measured to evaluate mito⁃chondrial function.RESULTS SMI decreased mortality rate of Dox-injected mice,serum CK and CK-MB levels in vivo.SMI significantly prevented Dox-induced cardiac dysfunction and apoptosis and increased expression level of PI3K,p-Akt,and p-GSK-3β.Moreover,SMI significantly inhibited Dox-induced apoptosis,mitochondrial ROS production,and reduction of mitochondrial membrane potential in H9C2 cells.Mechanismly,the cardio-protective effect of SMI was suppressed by PI3K inhibitor LY294002.CONCLUSION SMI prevents Dox-induced cardiotoxicity and mitochondrial damage through activation of PI3K/Akt signaling pathway.
基金The project supported by grants from the Science and Technology Development Fund of Macao,China(014/2011/A1and 078/2011/A3)Research Committee,University of Macao〔MYRG138(Y1-Y4)-ICMS12-LMY〕
文摘OBJECTIVE To investigate the cardioprotective effect of novel danshensu derivatives against doxorubicin(Dox)cardiotoxicity and their synergistic anti-tumor effect with Dox on breast cancer cells.METHODS Two new Danshensu derivatives were synthesized by conjugation with tetramethylpyrizine and/or4-(3-thioxo-3 H-1,2-dithiol-4-yl)-benzoic acid and tested for protective effects against Dox induced cardiotoxicity in cell and zebrafish.H9c2 cardiomyoblasts were co-treated with Dox and Danshensu derivatives for 24 h and then were measured for cell viability and cytotoxicity by MTT and LDH assays.The expression levels of mitochondrial biogenesis related proteins PGC-1α,NRF-1and Nrf2 were detected by Western blotting and qPCR.Moreover,in a Dox-induced cardiotoxicity model of zebrafish,zebrafish embryos were treated with Dox for 36 h,followed by measurement of numerous ventricular function parameters including heart rate,stroke volume,cardiac output and fractional shortening.In addition,the synergistic anti-tumor effects of the Danshensu derivatives and Dox had been studied in MCF-7 breast cancer cells.The effects of the Danshensu derivatives on the cell death and metabolism of MCF-7 cells were measured using apoptosis assay and Seahorse Metabolic Analyzers respectively.RESULTS Our results showed that the Danshensu derivatives were more potent than the parental compounds in ameliorating Dox-induced cytotoxicity in H9c2 cells and significantly preserving stroke volume of heart function in Dox-treated zebrafish.Further mechanistic studies identified that the danshensu derivatives increased mitochondrial copy numbers and protein expressions of PGC-1α,NRF-1 and Nrf2 in H9c2 cells.In addition,the Danshensu derivatives enhanced Dox-induced apoptosis,and decreased glycolysis and mitochondrial function in MCF-7 tumor cells.CONCLUSION Our results revealed that two new Danshensu derivatives displayed promising cardioprotective effects against Dox induced cardiotoxicity both in vivo and in vitro,at least partially through activating mitochondrial biogenesis.Also,the new Danshensu derivatives potentiated the anticancer effects of Dox in breast tumor cells involving induction of glycolytic inhibition and mitochondrial dysfunction.