在航迹随机有限集的分布式多目标跟踪方法中,同一目标在不同传感器下估计航迹可能出现起始时间或航迹长度不一致的问题,提出一种基于航迹状态空间结构(state space structure,SSS)的分布式跟踪方法以及该方法的高斯混合模型实现。在基...在航迹随机有限集的分布式多目标跟踪方法中,同一目标在不同传感器下估计航迹可能出现起始时间或航迹长度不一致的问题,提出一种基于航迹状态空间结构(state space structure,SSS)的分布式跟踪方法以及该方法的高斯混合模型实现。在基于加权算术平均融合准则的分布式多目标跟踪框架下,结合航迹概率假设密度滤波器与航迹基数概率假设密度滤波器,利用航迹SSS信息,将航迹随机有限集的信息融合问题分治为多个独立的单一线性空间内子随机有限集信息融合问题。仿真实验基于广义最优子模式匹配度量方法比较了该方法与多种跟踪方法的跟踪性能,该方法估计结果与真实航迹误差最小,表明了该方法的有效性。展开更多
CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标...CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标进行航迹关联,在此基础上对修剪合并后各个高斯分量的权值进行两次分配。首先对超过检测门限的高斯分量权值进行分配,有效解决了目标漏检问题,然后基于一个目标只可能产生一个观测的事实进行第2次分配,改善了目标发生交叉时的算法性能。实验结果表明,所提方法在多目标状态估计和航迹维持方面均优于普通的CPHD算法。展开更多
标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步...标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步初始化的高斯混合CPHD滤波器。该滤波器利用位置上远离当前时刻估计状态的观测值单步初始化新生目标。此外,多普勒信息一方面被用来初始化新生目标的速度,另一方面在滤波器更新步骤中,多普勒速度和位置观测信息采用串行更新方法处理。仿真结果表明,所提算法在目标数的估计精度和优化子模式分配距离方面优于已有算法。展开更多
提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降...提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降低了运算量。算法通过对群目标状态采用CPHD滤波进行预测更新,并使用所获得的群信息修正群内目标的状态,进而实现对群质心的跟踪和群目标的势估计。仿真对比实验表明,所提算法在达到与传统算法相似估计性能的条件下,大幅降低了算法的运算量,同时在强杂波环境下也具有更为突出的优势。展开更多
In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with ...In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.展开更多
文摘在航迹随机有限集的分布式多目标跟踪方法中,同一目标在不同传感器下估计航迹可能出现起始时间或航迹长度不一致的问题,提出一种基于航迹状态空间结构(state space structure,SSS)的分布式跟踪方法以及该方法的高斯混合模型实现。在基于加权算术平均融合准则的分布式多目标跟踪框架下,结合航迹概率假设密度滤波器与航迹基数概率假设密度滤波器,利用航迹SSS信息,将航迹随机有限集的信息融合问题分治为多个独立的单一线性空间内子随机有限集信息融合问题。仿真实验基于广义最优子模式匹配度量方法比较了该方法与多种跟踪方法的跟踪性能,该方法估计结果与真实航迹误差最小,表明了该方法的有效性。
文摘CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标进行航迹关联,在此基础上对修剪合并后各个高斯分量的权值进行两次分配。首先对超过检测门限的高斯分量权值进行分配,有效解决了目标漏检问题,然后基于一个目标只可能产生一个观测的事实进行第2次分配,改善了目标发生交叉时的算法性能。实验结果表明,所提方法在多目标状态估计和航迹维持方面均优于普通的CPHD算法。
文摘标准的带势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器是一个有效的多目标跟踪算法,但是它假定新生目标的强度函数先验已知,因而无法应用于新生目标在场景中任意位置出现的环境。针对此问题,提出一种单步初始化的高斯混合CPHD滤波器。该滤波器利用位置上远离当前时刻估计状态的观测值单步初始化新生目标。此外,多普勒信息一方面被用来初始化新生目标的速度,另一方面在滤波器更新步骤中,多普勒速度和位置观测信息采用串行更新方法处理。仿真结果表明,所提算法在目标数的估计精度和优化子模式分配距离方面优于已有算法。
文摘提出一种基于演化网络模型和区间分析的群目标势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波算法。针对传统的粒子CPHD群目标跟踪算法中粒子数多、运算量大的问题,采用箱粒子实现CPHD滤波器,减少了粒子数,降低了运算量。算法通过对群目标状态采用CPHD滤波进行预测更新,并使用所获得的群信息修正群内目标的状态,进而实现对群质心的跟踪和群目标的势估计。仿真对比实验表明,所提算法在达到与传统算法相似估计性能的条件下,大幅降低了算法的运算量,同时在强杂波环境下也具有更为突出的优势。
文摘In multiple extended targets tracking, replacing traditional multiple measurements with a rectangular region of the nonzero volume in the state space inspired by the box-particle idea is exactly suitable to deal with extended targets, without distinguishing the measurements originating from the true targets or clutter.Based on our recent work on extended box-particle probability hypothesis density(ET-BP-PHD) filter, we propose the extended labeled box-particle cardinalized probability hypothesis density(ET-LBP-CPHD) filter, which relaxes the Poisson assumptions of the extended target probability hypothesis density(PHD) filter in target numbers, and propagates not only the intensity function but also cardinality distribution. Moreover, it provides the identity of individual target by adding labels to box-particles. The proposed filter can improve the precision of estimating target number meanwhile achieve targets' tracks. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.