期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
A review of carbon-based hybrid materials for supercapacitors 被引量:1
1
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 北大核心 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 carbon-based hybrid material Structure design Electrode material Specific capacitance SUPERCAPACITORS
在线阅读 下载PDF
The use of carbon-based particle electrodes in three-dimensional electrode reactors for wastewater treatment 被引量:1
2
作者 LU Hua-yu LIU Wei-feng +1 位作者 QIN Lei LIU Xu-guang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期973-991,共19页
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research... The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed. 展开更多
关键词 Environmental pollution Three-dimensional electrode technology carbon-based materials carbon-based particle electrode
在线阅读 下载PDF
Defect engineering of carbon-based electrocatalysts for the CO_(2)reduction reaction:A review 被引量:2
3
作者 LU Yan-kun CHENG Bai-xue +1 位作者 ZHAN Hao-yu ZHOU Peng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第1期17-41,共25页
Electrocatalytic carbon dioxide(CO_(2))reduction is an important way to achieve carbon neutrality by converting CO_(2)in-to high-value-added chemicals using electric energy.Carbon-based materials are widely used in va... Electrocatalytic carbon dioxide(CO_(2))reduction is an important way to achieve carbon neutrality by converting CO_(2)in-to high-value-added chemicals using electric energy.Carbon-based materials are widely used in various electrochemical reactions,including electrocatalytic CO_(2)reduction,due to their low cost and high activity.In recent years,defect engineering has attracted wide attention by constructing asymmetric defect centers in the materials,which can optimize the physicochemical properties of the mater-ial and improve its electrocatalytic activity.This review summarizes the types,methods of formation and defect characterization tech-niques of defective carbon-based materials.The advantages of defect engineering and the advantages and disadvantages of various defect formation methods and characterization techniques are also evaluated.Finally,the challenges of using defective carbon-based materials in electrocatalytic CO_(2)reduction are investigated and opportunities for their use are discussed.It is believed that this re-view will provide suggestions and guidance for developing defective carbon-based materials for CO_(2)reduction. 展开更多
关键词 Defect engineering carbon-based materials ELECTROCATALYSIS CO_(2)reduction
在线阅读 下载PDF
Improvement in Performance of Carbon-based Perovskite Solar Cells through Interface Modification with CTAC
4
作者 SHEN Siming TIAN Chuanjin +5 位作者 JU Zhiyang ZHU Liangping JIANG Wenying WANG Chang'an XIE Zhipeng ZHAO Wenyan 《陶瓷学报》 CAS 北大核心 2024年第6期1136-1144,共9页
Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing ... Carbon-based perovskite solar cells have attracted much attention,due to their low cost,simple preparation process and high chemical stability.However,the devices exhibit low photoelectric conversion efficiency,owing to the presence of defects and interface impedance between the perovskite active layer and the contact interface.In order to minimize the interfacial defects and improve the charge transfer performance between the perovskite layer and the contact interface,cetyltrimethylammonium chloride(CTAC)was introduced into the lower interface of HTL-free carbon-based perovskite solar cells,because CTAC can be used as interface modification material to passivate the buried interface of perovskite and promote grain growth.It was found that CTAC can not only passivate the interface defects of perovskite,but also improve the crystalline quality of perovskite.As a result,the photovoltaic conversion efficiency of reaches 17.18%,which is 12.5%higher than that of the control group.After 20 days in air with 60%RH humidity,the cell can still maintain more than 90%of the initial efficiency,which provides a new strategy for interfacial passivation of perovskite solar cells. 展开更多
关键词 carbon-based perovskite solar cells hole transport layer-free interface modification photovoltaic conversion efficiency stability
在线阅读 下载PDF
Series Reports from Professor Wei's Group of Chongqing University:Advancements in Electrochemical Energy Conversions(1/4):Report 1:High-performance Oxygen Reduction Catalysts for Fuel Cells 被引量:2
5
作者 Fa-Dong Chen Zhuo-Yang Xie +5 位作者 Meng-Ting Li Si-Guo Chen Wei Ding Li Li Jing Li Zi-Dong Wei 《电化学(中英文)》 CAS 北大核心 2024年第7期1-27,共27页
Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without lo... Two major challenges,high cost and short lifespan,have been hindering the commercialization process of lowtemperature fuel cells.Professor Wei's group has been focusing on decreasing cathode Pt loadings without losses of activity and durability,and their research advances in this area over the past three decades are briefly reviewed herein.Regarding the Pt-based catalysts and the low Pt usage,they have firstly tried to clarify the degradation mechanism of Pt/C catalysts,and then demonstrated that the activity and stability could be improved by three strategies:regulating the nanostructures of the active sites,enhancing the effects of support materials,and optimizing structures of the three-phase boundary.For Pt-free catalysts,especialiy carbon-based ones,several strategies that they proposed to enhance the activity of nitrogen-/heteroatom-doped carbon catalysts are firstly presented.Then,an indepth understanding of the degradation mechanism for carbon-based catalysts is discussed,and followed by the corresponding stability enhancement strategies.Also,the carbon-based electrode at the micrometer-scale,faces the challenges such as low active-site density,thick catalytic layer,and the effect of hydrogen peroxide,which require rational structure design for the integral cathodic electrode.This review finally gives a brief conclusion and outlook about the low cost and long lifespan of cathodic oxygen reduction catalysts. 展开更多
关键词 Fuel cell Oxygen reduction reaction Pt-based catalyst carbon-based catalyst
在线阅读 下载PDF
The effect of the carbon components on the performance of carbonbased transition metal electrocatalysts for the hydrogen evolution reaction
6
作者 LI Guo-hua WANG Jing +6 位作者 REN Jin-tian LIU Hong-chen QIAN Jin-xiu CHENG Jia-ting ZHAO Mei-tong YANG Fan LI Yong-feng 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期946-972,共27页
The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts hav... The hydrogen evolution reaction(HER)is a promising way to produce hydrogen,and the use of non-precious metals with an excellent electrochemical performance is vital for this.Carbon-based transition metal catalysts have high activity and stability,which are important in reducing the cost of hydrogen production and promoting the development of the hydrogen production industry.However,there is a lack of discussion regarding the effect of carbon components on the performance of these electrocatalysts.This review of the literature discusses the choice of the carbon components in these catalysts and their impact on catalytic performance,including electronic structure control by heteroatom doping,morphology adjustment,and the influence of self-supporting materials.It not only analyzes the progress in HER,but also provides guidance for synthesizing high-performance carbon-based transition metal catalysts. 展开更多
关键词 carbon-based transition metal catalysts Heteroatom doping Morphology adjustment Self-supporting materials Hydrogen evolution reaction
在线阅读 下载PDF
Biochar Serves as a Long-term Soil Carbon Pool 被引量:1
7
作者 Lena Q.Ma 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期231-232,共2页
Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is... Biochar is a carbon-rich(】60%)organic material derived from incomplete combustion of fossil fuels and biomass.It consists of a continuum ranging from slightly charred material through char and charcoal to soot,and is ubiquitous in the atmosphere,marine sediment,soil and water.Moreover,】80%of biochar produced ends up in soils,where it resides for hundreds to thousands of years.Because of its resistance to biological and chemical breakdown, biochar can serve as a pool of C with long residence time in the soil.As a result,there has been increasing attention given to the potential of biochar to sequestrate carbon and counteract 展开更多
关键词 BIOCHAR SOIL carbon POOL carbon-based GREENHOUSE GASES
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部