Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and c...Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.展开更多
The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex...The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex- plore efficient and sustainable approaches for the carbon-neutral pathway of CO2 utilization and recycling. In our recent works with this context, we developed successfully a novel "chemical vapor deposition integrated process (CVD-IP)" technology to converting robustly CO2 into the value-added solid-form carbon materials, The monometallic FeNi0-Al2O3 (FNi0) and bimetallic FeNix-Al2O3 (FNi2, FNi4, FNi8 and FNi20) samples were synthesized and effective for this new approach. The catalyst labeled FNi8 gave the better performance, exhibited the single pass solid carbon yield of 30%. These results illustrated alternative promising cases for the CO2 capture utilization storage (CCUS), by means of the CO2 catalytic conversion into the solid-form nano carbon materials.展开更多
The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a signifi...The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.展开更多
Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techni...Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize thestructure and surface acidity/basicity of the CeO_2/γ-Al_2O_3 catalysts. The results show that thesurface acidity decreased while the surface basicity increased after the addition of CeO_2 toγ-Al_2O_3. Accordingly, the activity of the hydrogenation reaction of CO_2 increased, which mightbe responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highestethane conversion obtained was about 15% for the 25%CeO_2/γ-Al_2O_3. The selectivity to ethylenewas high for all the CeO_2, γ-Al_2O_3 and CeO2/γ-Al_2O_3 catalysts.展开更多
The effects of Mo, Mn and Zr transitional metals on the catalytic performance of Ru/sepiolite for CO2 methanation were investigated. The results indicated that addition of the transitional metals affected the activity...The effects of Mo, Mn and Zr transitional metals on the catalytic performance of Ru/sepiolite for CO2 methanation were investigated. The results indicated that addition of the transitional metals affected the activity of the Ru/sepiolite remarkably, and the activities of the catalysts were closely associated with the electronic state of the ruthenium surface. The addition of Mo increased the active surface area, the Ru dispersity, the number of active sites, and the resistance to poisoning. According to the Transition State Theory, when Mo is added into the Ru/sepiolite catalyst, the decrease in surface energy is at a cost of an increment in steric hindrance. When T≤674 K, the energy factor was dominating, and resulted in a decreasing in the ratio of S(CU4)/S(CO). Otherwise, the steric factor dominated the reaction course.展开更多
The conversion of inexpensive,available C1 feedstock of carbon dioxide(CO_(2))into value-added fine chemicals via homogeneous or heterogeneous catalysis has attracted great recent interest.Coinagemetal-based(Cu,Ag,and...The conversion of inexpensive,available C1 feedstock of carbon dioxide(CO_(2))into value-added fine chemicals via homogeneous or heterogeneous catalysis has attracted great recent interest.Coinagemetal-based(Cu,Ag,and Au)catalysis has emerged as a synthetic strategy for a wide range of organic chemical reactions in past decades.In coinage-metal-catalyzed carboxylation,CO_(2)is adopted as a carboxylation reagent,while coinage-metal salts,complexes,and nanoparticles(NPs)serve as a Lewis acid catalyst to activate unsaturated chemicals,particularly alkynes.This mini-review focuses on the recent advances of coinage-metal-catalyzed carboxylation of terminal alkynes with CO_(2).Other respects,such as the role of bases,the influence of trace water,and solvent effects are also highlighted.展开更多
The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox...The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.展开更多
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio...The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.展开更多
The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challen...The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challenges and work toward carbon(C)neutrality and reduced CO_(2)emissions,the capture and utilization of CO_(2)have become imperative in both scientific research and industry.One cutting-edge approach to achieving efficient catalytic performance involves integrating green bioconversion and chemical conversion.This innovative strategy offers several advantages,including environmental friendliness,high efficiency,and multi-selectivity.This study provides a comprehensive review of existing technical routes for carbon sequestration(CS)and introduces two novel CS pathways:the electrochemicalbiological hybrid and artificial photosynthesis systems.It also thoroughly examines the synthesis of valuable Cnproducts from the two CS systems employing different catalysts and biocatalysts.As both systems heavily rely on electron transfer,direct and mediated electron transfer has been discussed and summarized in detail.Additionally,this study explores the conditions suitable for different catalysts and assesses the strengths and weaknesses of biocatalysts.We also explored the biocompatibility of the electrode materials and developed novel materials.These materials were specifically engineered to combine with enzymes or microbial cells to solve the biocompatibility problem,while improving the electron transfer efficiency of both.Furthermore,this review summarizes the relevant systems developed in recent years for manufacturing different products,along with their respective production efficiencies,providing a solid database for development in this direction.The novel chemical-biological combination proposed herein holds great promise for the future conversion of CO_(2)into advanced organic compounds.Additionally,it offers exciting prospects for utilizing CO_(2)in synthesizing a wide range of industrial products.Ultimately,the present study provides a unique perspective for achieving the vital goals of“peak shaving”and C-neutrality,contributing significantly to our collective efforts to combat climate change and its associated challenges.展开更多
Methane(CH_(4))and carbon dioxide(CO_(2))are primary components of coal seam gas(CSG).Understanding their adsorption-desorption hysteresis characteristics,along with the fundamental mechanism,is crucial for CSG exploi...Methane(CH_(4))and carbon dioxide(CO_(2))are primary components of coal seam gas(CSG).Understanding their adsorption-desorption hysteresis characteristics,along with the fundamental mechanism,is crucial for CSG exploitation and related hazards mitigation.This research focused on the representative Bulli coal seam in the Sydney Basin,Australia.Through the purpose-built indirect gravimetric high-pressure isothermal adsorption-desorption hysteresis experiment,a novel Langmuir-based desorption model,incorporating hysteresis effect and residual gas,was proposed.Quantitative characterization of the adsorption-desorption hysteresis degrees of CO_(2)and CH_(4)i n coal particles of various sizes and inΦ50mm 100 mm intact coal samples were achieved using the improved hysteresis index(IHI).The experimental findings validated that the proposed desorption model accurately describes the desorption behavior of CO_(2)and CH_(4)in coal(R^(2)>0.99).Based on the adsorption-desorption properties of inkbottle-shaped micropores and pore deformation caused by gas adsorption-induced coal expansion,the occurrence mechanism of adsorption–desorption hysteresis and the fundamental reasons for the presence of residual gas were elucidated.Furthermore,the study explored the impact of CO_(2)and CH_(4)adsorption-desorption hysteresis effects on coal and gas outbursts,suggesting that coal seams rich in CO_(2)do not have a higher propensity for outbursts than those rich in CH_(4).展开更多
Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industr...Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries.展开更多
Recently, various efforts have been put forward on the development of technologies for the synthesis of methane from CO2 and H-2, since it can offer a solution for renewable H-2 storage and transportation. In parallel...Recently, various efforts have been put forward on the development of technologies for the synthesis of methane from CO2 and H-2, since it can offer a solution for renewable H-2 storage and transportation. In parallel, this reaction is considered to be a critical step in reclaiming oxygen within a closed cycle. Over the years, extensive fundamental research works on CO2 methanation have been investigated and reported in the literatures. In this updated review, we present a comprehensive overview of recent publications during the last 3 years. Various aspects on this reaction system are described in detail, such as thermodynamic considerations, catalyst innovations, the influence of reaction conditions, overall catalytic performance, and reaction mechanism. Finally, the future development of CO2 methanation is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results in...The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results indicated that besides a small quantity of 6H-SiC, SiC NPs mainly consisted of 3C-SiC. The band gaps of SiC and Cu2O were estimated to be about 1.95 and 2.23 eV from UV-Vis spectra, respectively. The Cu2O modification can enhance the photocatalytic performance of SiC NPs, and the largest yields of methanol on SiC, Cu2O and Cu2O/SiC photocatalysts under visible light irradiation were 153, 104 and 191μmol/g, respectively.展开更多
Electrocatalytic carb on dioxide reducti on(CO_(2)R)presents a promising route to establish zero-e mission carb on cycle and store in termittent ren ewable energy into chemical fuels for steady energy supply.Methanol ...Electrocatalytic carb on dioxide reducti on(CO_(2)R)presents a promising route to establish zero-e mission carb on cycle and store in termittent ren ewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fuels and one of the most important commodity chemicals.Nevertheless,methanol is currently mainly produced from fossil-based syngas,the production of which yields tremendous carb on emission globally.Direct CO_(2)R towards metha nol poses great potential to shift the paradigm of methanol production.In this perspective,we focus our discussions on producing methanol from electrochemical CO_(2)R,using metallomacrocyclic molecules as the model catalysts.We discuss the motivation of having methanol as the sole CO_(2)R product,the documented application of metallomacrocyclic catalysts for CO_(2)R,and recent advance in catalyzing CO_(2) to methanol with cobalt phthalocyanine-based catalysts.We attempt to understand the key factors in determining the activity,selectivity,and stability of electrocatalytic CO_(2)-to-methanol conversion,and to draw mechanistic insights from existing observations.Finally,we identify the challenges hindering methanol electrosynthesis directly from CO_(2) and some intriguing directions worthy of further investigation and exploration.展开更多
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an el...Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.展开更多
Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based ...Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based on TiOnanoplates have been synthesized via a hydrothermal acidification route for water and carbon dioxide reduction reactions. This facile approach generates well dispersed Mo S3 with low crystallinity on the surface of TiOnanoplates. The as-synthesized MoS/TiOphotocatalyst showed considerable activity for both water reduction and carbon dioxide reduction. The thermal treatment effects of TiO, the loading percentage of MoSand the crystalline phase of TiOhave been investigated towards the photocatalytic performance. TiOnanoplate synthesized through hydrothermal reaction with the presence of HF acid is an ideal semiconductor material for the loading of MoSfor photocatalytic water and carbon dioxide reduction simultaneously in EDTA sacrificial solution.展开更多
Bismuth-based materials(e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO_(2) to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismu...Bismuth-based materials(e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO_(2) to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismuth oxides and subcarbonate encounter stability issues. This work is designated to exemplify that the operando synthesis can be an effective means to enhance the stability of electrocatalysts under operando CO_(2)RR conditions. A synthetic approach is developed to electrochemically convert Bi^(O)Cl into Cl-containing subcarbonate(Bi_(2)O_(2)(CO_(3))_(x)Cl_(y)) under operando CO_(2)RR conditions. The systematic operando spectroscopic studies depict that BiOCl is converted to Bi_(2)O_(2)(CO_(3))_(x)Cl_(y) via a cathodic potential-promoted anion-exchange process. The operando synthesizedBi_(2)O_(2)(CO_(3))_(x)Cl_(y) can tolerate-1.0 V versus RHE, while for the wet-chemistry synthesized pure Bi_(2)O_(2)CO_(3),the formation of metallic Bio occurs at-0.6 V versus RHE. At-0.8 V versus RHE, Bi_(2)O_(2)(CO_(3))_(x)Cl_(y) can readily attain a FEHCOO-of 97.9%,much higher than that of the pure Bi_(2)O_(2)CO_(3)(81.3%). DFT calculations indicate that differing from the pure Bi_(2)O_(2)CO_(3)-catalyzed CO_(2)RR, where formate is formed via a *OCHO intermediate step that requires a high energy input energy of 2.69 eV to proceed, the formation of H COO-over Bi_(2)O_(2)(CO_(3))_(x)Cl_(y) has proceeded via a *COOH intermediate step that only requires low energy input of 2.56 eV.展开更多
CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative cou...CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative coupling of methane with carbon dioxide was tested and compared; the frac-tal behavior of the nanocatalysts was analyzed using fractal theory. The CeO2/ZnO nanocatalysts had much higher activity than the catalysts prepared by impregnation method. There was no regular relation-ship between the average size of CeO2/ZnO nanocatalysts and their catalytic performance; however, the conversion of methane increased with the increase of the fractal dimension of CeO2/ZnO nanocatalysts.展开更多
Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, elect...Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.展开更多
Fe-Al catalysts with hollow nano-spherical structures were synthesized following the hard template method using self-made carbon spheres as templates.The catalytic performance of these catalysts in the production of c...Fe-Al catalysts with hollow nano-spherical structures were synthesized following the hard template method using self-made carbon spheres as templates.The catalytic performance of these catalysts in the production of carbon nanotubes(CNTs)was evaluated through ethane catalytic cracking on a fixed bed reactor.Furthermore,the influence of these hollow nanospheres on the yield and quality of CNTs was investigated.The results showed that compared to the irregular-shaped catalyst synthesized by coprecipitation and the catalyst with micro-spherical structures prepared by the impregnation method,the Fe-Al hollow nano-spherical catalysts exhibited significantly enhanced specific surface area and pore volume,reaching 236 m^(2)/g and 0.77 cm^(3)/g,respectively.At a reaction temperature of 700℃ and an ethane feed rate of 90 mL/min,the CNTs yield of Fe-Al hollow nano-spherical catalyst reached as high as 48.6 gCNT/gcat,which was 1.8 and 4.6 times higher than the yield of irregular-shaped(27.7 gCNT/gcat)and micro-spherical(10.5 gCNT/gcat)catalysts,respectively.This was mainly attributed to the hollow cavity structure of Fe-Al catalyst providing sufficient space for the CNTs growth.As a result,the blockage of catalyst internal pores was prevented by the formed CNTs,which isolated ethane molecules from the active sites and lead to catalyst deactivation.Furthermore,the CNTs synthesized by Fe-Al hollow nano-spherical catalyst exhibited a uniform diameter distribution and a higher degree of graphitization.展开更多
基金the National 973 Program of Ministry of Sciences and Technologies of China(2011CB201202)the National Natural Science Foundation of China(20776089)
文摘Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide.
基金support for this project from the National Natural Science Foundation of China (21476145)the National 973 Program of Ministry of Sciences and Technologies of China (2011CB201202)
文摘The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex- plore efficient and sustainable approaches for the carbon-neutral pathway of CO2 utilization and recycling. In our recent works with this context, we developed successfully a novel "chemical vapor deposition integrated process (CVD-IP)" technology to converting robustly CO2 into the value-added solid-form carbon materials, The monometallic FeNi0-Al2O3 (FNi0) and bimetallic FeNix-Al2O3 (FNi2, FNi4, FNi8 and FNi20) samples were synthesized and effective for this new approach. The catalyst labeled FNi8 gave the better performance, exhibited the single pass solid carbon yield of 30%. These results illustrated alternative promising cases for the CO2 capture utilization storage (CCUS), by means of the CO2 catalytic conversion into the solid-form nano carbon materials.
文摘The conversion of carbon dioxide into value-added products is of great industrial and environmental interest. However, as carbon dioxide is relatively stable, the input energy required for this conversion is a significant limiting factor in the system's performance. By utilising energy from the sun, through a range of key routes, this limitation can be overcome. In this review, we present a comprehensive and critical overview of the potential routes to harvest the sun's energy, primarily through solar-thermal technologies and plasmonic resonance effects. Focusing on the localised heating approach, this review shortlists and compares viable catalysts for the photo-thermal catalytic conversion of carbon dioxide.Further, the pathways and potential products of different carbon dioxide conversion routes are outlined with the reverse water gas shift,methanation, and methanol synthesis being of key interest. Finally, the challenges in implementing such systems and the outlook to the future are detailed.
文摘Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize thestructure and surface acidity/basicity of the CeO_2/γ-Al_2O_3 catalysts. The results show that thesurface acidity decreased while the surface basicity increased after the addition of CeO_2 toγ-Al_2O_3. Accordingly, the activity of the hydrogenation reaction of CO_2 increased, which mightbe responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highestethane conversion obtained was about 15% for the 25%CeO_2/γ-Al_2O_3. The selectivity to ethylenewas high for all the CeO_2, γ-Al_2O_3 and CeO2/γ-Al_2O_3 catalysts.
文摘The effects of Mo, Mn and Zr transitional metals on the catalytic performance of Ru/sepiolite for CO2 methanation were investigated. The results indicated that addition of the transitional metals affected the activity of the Ru/sepiolite remarkably, and the activities of the catalysts were closely associated with the electronic state of the ruthenium surface. The addition of Mo increased the active surface area, the Ru dispersity, the number of active sites, and the resistance to poisoning. According to the Transition State Theory, when Mo is added into the Ru/sepiolite catalyst, the decrease in surface energy is at a cost of an increment in steric hindrance. When T≤674 K, the energy factor was dominating, and resulted in a decreasing in the ratio of S(CU4)/S(CO). Otherwise, the steric factor dominated the reaction course.
文摘The conversion of inexpensive,available C1 feedstock of carbon dioxide(CO_(2))into value-added fine chemicals via homogeneous or heterogeneous catalysis has attracted great recent interest.Coinagemetal-based(Cu,Ag,and Au)catalysis has emerged as a synthetic strategy for a wide range of organic chemical reactions in past decades.In coinage-metal-catalyzed carboxylation,CO_(2)is adopted as a carboxylation reagent,while coinage-metal salts,complexes,and nanoparticles(NPs)serve as a Lewis acid catalyst to activate unsaturated chemicals,particularly alkynes.This mini-review focuses on the recent advances of coinage-metal-catalyzed carboxylation of terminal alkynes with CO_(2).Other respects,such as the role of bases,the influence of trace water,and solvent effects are also highlighted.
基金supported by the National Natural Science Foundation of China (Nos.U22B6004,51974341)State Key Laboratory of Deep Oil and Gas (No.SKLDOG2024-ZYTS-14)the Fundamental Research Funds for the Central Universities (No.20CX06070A)。
文摘The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.
文摘The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.
基金supported by the National Key R&D Program of China(2018YFA0901700)the National Natural Science Foundation of China(31970038,22278241)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)the Department of Chemical Engineering-i BHE Joint Cooperation Fund。
文摘The unabated carbon dioxide(CO_(2))emission into the atmosphere has exacerbated global climate change,resulting in extreme weather events,biodiversity loss,and an intensified greenhouse effect.To address these challenges and work toward carbon(C)neutrality and reduced CO_(2)emissions,the capture and utilization of CO_(2)have become imperative in both scientific research and industry.One cutting-edge approach to achieving efficient catalytic performance involves integrating green bioconversion and chemical conversion.This innovative strategy offers several advantages,including environmental friendliness,high efficiency,and multi-selectivity.This study provides a comprehensive review of existing technical routes for carbon sequestration(CS)and introduces two novel CS pathways:the electrochemicalbiological hybrid and artificial photosynthesis systems.It also thoroughly examines the synthesis of valuable Cnproducts from the two CS systems employing different catalysts and biocatalysts.As both systems heavily rely on electron transfer,direct and mediated electron transfer has been discussed and summarized in detail.Additionally,this study explores the conditions suitable for different catalysts and assesses the strengths and weaknesses of biocatalysts.We also explored the biocompatibility of the electrode materials and developed novel materials.These materials were specifically engineered to combine with enzymes or microbial cells to solve the biocompatibility problem,while improving the electron transfer efficiency of both.Furthermore,this review summarizes the relevant systems developed in recent years for manufacturing different products,along with their respective production efficiencies,providing a solid database for development in this direction.The novel chemical-biological combination proposed herein holds great promise for the future conversion of CO_(2)into advanced organic compounds.Additionally,it offers exciting prospects for utilizing CO_(2)in synthesizing a wide range of industrial products.Ultimately,the present study provides a unique perspective for achieving the vital goals of“peak shaving”and C-neutrality,contributing significantly to our collective efforts to combat climate change and its associated challenges.
基金provided by the China Scholarship Council(No.202006430006)and the University of Wollongongsupported by the ACARP Projects(Nos.C28006 and C35015)support from the Coal Services Health and Safety Trust(No.20661)。
文摘Methane(CH_(4))and carbon dioxide(CO_(2))are primary components of coal seam gas(CSG).Understanding their adsorption-desorption hysteresis characteristics,along with the fundamental mechanism,is crucial for CSG exploitation and related hazards mitigation.This research focused on the representative Bulli coal seam in the Sydney Basin,Australia.Through the purpose-built indirect gravimetric high-pressure isothermal adsorption-desorption hysteresis experiment,a novel Langmuir-based desorption model,incorporating hysteresis effect and residual gas,was proposed.Quantitative characterization of the adsorption-desorption hysteresis degrees of CO_(2)and CH_(4)i n coal particles of various sizes and inΦ50mm 100 mm intact coal samples were achieved using the improved hysteresis index(IHI).The experimental findings validated that the proposed desorption model accurately describes the desorption behavior of CO_(2)and CH_(4)in coal(R^(2)>0.99).Based on the adsorption-desorption properties of inkbottle-shaped micropores and pore deformation caused by gas adsorption-induced coal expansion,the occurrence mechanism of adsorption–desorption hysteresis and the fundamental reasons for the presence of residual gas were elucidated.Furthermore,the study explored the impact of CO_(2)and CH_(4)adsorption-desorption hysteresis effects on coal and gas outbursts,suggesting that coal seams rich in CO_(2)do not have a higher propensity for outbursts than those rich in CH_(4).
基金the National Natural Science Foundation of China(52206262)Small and Medium-sized Sci-tech Enterprises Innovation Capability Improvement Project of Shandong Province,China(2022TSGC2248,2023TSGC0579)+1 种基金Talent Research Project of Qilu University of Technology(Shandong Academy of Sciences)(2023RCKY170)Natural Science Foundation of Shandong Province,China(ZR2020ME191).
文摘Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries.
基金supported by the National Natural Science Foundation of China(Nos.21103173,21476226 and 21506204)the Key Research Programme of the CAS(KGZD-EW-T05)the Youth Innovation Promotion Association of the CAS and DICP Fundamental Research Program for Clean Energy(DICPM201307)
文摘Recently, various efforts have been put forward on the development of technologies for the synthesis of methane from CO2 and H-2, since it can offer a solution for renewable H-2 storage and transportation. In parallel, this reaction is considered to be a critical step in reclaiming oxygen within a closed cycle. Over the years, extensive fundamental research works on CO2 methanation have been investigated and reported in the literatures. In this updated review, we present a comprehensive overview of recent publications during the last 3 years. Various aspects on this reaction system are described in detail, such as thermodynamic considerations, catalyst innovations, the influence of reaction conditions, overall catalytic performance, and reaction mechanism. Finally, the future development of CO2 methanation is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金supported by the National Natural Science Foundation of China (Grant No. 20906034)the Key Academic Program of the 3rd Phase "211 Project" of South China Agricultural University (Grant No. 2009B010100001)China Postdoctoral Science Foundation (Grant No. 20080430820)
文摘The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results indicated that besides a small quantity of 6H-SiC, SiC NPs mainly consisted of 3C-SiC. The band gaps of SiC and Cu2O were estimated to be about 1.95 and 2.23 eV from UV-Vis spectra, respectively. The Cu2O modification can enhance the photocatalytic performance of SiC NPs, and the largest yields of methanol on SiC, Cu2O and Cu2O/SiC photocatalysts under visible light irradiation were 153, 104 and 191μmol/g, respectively.
基金financial support through the StartUp Fund for Outstanding Talent with grant number A1098531023601307the National University of Singapore and Ministry of Education in Singapore for its financial support through Tier-1 projects with grant numbers R-279000-622-133 and R-279-000-622-731.
文摘Electrocatalytic carb on dioxide reducti on(CO_(2)R)presents a promising route to establish zero-e mission carb on cycle and store in termittent ren ewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fuels and one of the most important commodity chemicals.Nevertheless,methanol is currently mainly produced from fossil-based syngas,the production of which yields tremendous carb on emission globally.Direct CO_(2)R towards metha nol poses great potential to shift the paradigm of methanol production.In this perspective,we focus our discussions on producing methanol from electrochemical CO_(2)R,using metallomacrocyclic molecules as the model catalysts.We discuss the motivation of having methanol as the sole CO_(2)R product,the documented application of metallomacrocyclic catalysts for CO_(2)R,and recent advance in catalyzing CO_(2) to methanol with cobalt phthalocyanine-based catalysts.We attempt to understand the key factors in determining the activity,selectivity,and stability of electrocatalytic CO_(2)-to-methanol conversion,and to draw mechanistic insights from existing observations.Finally,we identify the challenges hindering methanol electrosynthesis directly from CO_(2) and some intriguing directions worthy of further investigation and exploration.
基金supported by the Ministry of Science and Technology of China(Grant No:2012CB215500 and 2013CB933100)the National Natural Science Foundation of China(Grant No:21103178 and 21033009)
文摘Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.
基金supported by the Fundamental Research Funds for the Central Universities of Chinathe Starting Research Funds of Shaanxi Normal University for Mainstay Young Scholars+2 种基金the National Environment Agency of Singapore under the Environment Technology Research Programme(ETRP)through Project No.ETRP 1002 103Singapore National Research Foundation(NRF)through the Singapore-Berkeley Research Initiative for Sustainable Energy(SinBeRISE)Cambridge Centre for Carbon Reduction in Chemical Technology(C4T)CREATE Programmes
文摘Photocatalytic water splitting and carbon dioxide reduction provide us clean and sustainable energy resources. The carbon dioxide reduction is also the redemption of the greenhouse effect. MoS/TiOphotocatalysts based on TiOnanoplates have been synthesized via a hydrothermal acidification route for water and carbon dioxide reduction reactions. This facile approach generates well dispersed Mo S3 with low crystallinity on the surface of TiOnanoplates. The as-synthesized MoS/TiOphotocatalyst showed considerable activity for both water reduction and carbon dioxide reduction. The thermal treatment effects of TiO, the loading percentage of MoSand the crystalline phase of TiOhave been investigated towards the photocatalytic performance. TiOnanoplate synthesized through hydrothermal reaction with the presence of HF acid is an ideal semiconductor material for the loading of MoSfor photocatalytic water and carbon dioxide reduction simultaneously in EDTA sacrificial solution.
基金financially supported by Australian Research Council Discovery Project(DP200100965)。
文摘Bismuth-based materials(e.g., metallic, oxides and subcarbonate) are emerged as promising electrocatalysts for converting CO_(2) to formate. However, Bio-based electrocatalysts possess high overpotentials, while bismuth oxides and subcarbonate encounter stability issues. This work is designated to exemplify that the operando synthesis can be an effective means to enhance the stability of electrocatalysts under operando CO_(2)RR conditions. A synthetic approach is developed to electrochemically convert Bi^(O)Cl into Cl-containing subcarbonate(Bi_(2)O_(2)(CO_(3))_(x)Cl_(y)) under operando CO_(2)RR conditions. The systematic operando spectroscopic studies depict that BiOCl is converted to Bi_(2)O_(2)(CO_(3))_(x)Cl_(y) via a cathodic potential-promoted anion-exchange process. The operando synthesizedBi_(2)O_(2)(CO_(3))_(x)Cl_(y) can tolerate-1.0 V versus RHE, while for the wet-chemistry synthesized pure Bi_(2)O_(2)CO_(3),the formation of metallic Bio occurs at-0.6 V versus RHE. At-0.8 V versus RHE, Bi_(2)O_(2)(CO_(3))_(x)Cl_(y) can readily attain a FEHCOO-of 97.9%,much higher than that of the pure Bi_(2)O_(2)CO_(3)(81.3%). DFT calculations indicate that differing from the pure Bi_(2)O_(2)CO_(3)-catalyzed CO_(2)RR, where formate is formed via a *OCHO intermediate step that requires a high energy input energy of 2.69 eV to proceed, the formation of H COO-over Bi_(2)O_(2)(CO_(3))_(x)Cl_(y) has proceeded via a *COOH intermediate step that only requires low energy input of 2.56 eV.
文摘CeO2/ZnO nanocatalysts were prepared from the coupling route of homogeneous precipita-tion with microemulsion and the impregnation method. The catalytic performance of these two kinds of catalysts on the oxidative coupling of methane with carbon dioxide was tested and compared; the frac-tal behavior of the nanocatalysts was analyzed using fractal theory. The CeO2/ZnO nanocatalysts had much higher activity than the catalysts prepared by impregnation method. There was no regular relation-ship between the average size of CeO2/ZnO nanocatalysts and their catalytic performance; however, the conversion of methane increased with the increase of the fractal dimension of CeO2/ZnO nanocatalysts.
文摘Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.
文摘Fe-Al catalysts with hollow nano-spherical structures were synthesized following the hard template method using self-made carbon spheres as templates.The catalytic performance of these catalysts in the production of carbon nanotubes(CNTs)was evaluated through ethane catalytic cracking on a fixed bed reactor.Furthermore,the influence of these hollow nanospheres on the yield and quality of CNTs was investigated.The results showed that compared to the irregular-shaped catalyst synthesized by coprecipitation and the catalyst with micro-spherical structures prepared by the impregnation method,the Fe-Al hollow nano-spherical catalysts exhibited significantly enhanced specific surface area and pore volume,reaching 236 m^(2)/g and 0.77 cm^(3)/g,respectively.At a reaction temperature of 700℃ and an ethane feed rate of 90 mL/min,the CNTs yield of Fe-Al hollow nano-spherical catalyst reached as high as 48.6 gCNT/gcat,which was 1.8 and 4.6 times higher than the yield of irregular-shaped(27.7 gCNT/gcat)and micro-spherical(10.5 gCNT/gcat)catalysts,respectively.This was mainly attributed to the hollow cavity structure of Fe-Al catalyst providing sufficient space for the CNTs growth.As a result,the blockage of catalyst internal pores was prevented by the formed CNTs,which isolated ethane molecules from the active sites and lead to catalyst deactivation.Furthermore,the CNTs synthesized by Fe-Al hollow nano-spherical catalyst exhibited a uniform diameter distribution and a higher degree of graphitization.