Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon d...Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon dioxide is close to room temperature,making SCD a potential new working medium for pneumatic launch.To analyze the feasibility of this conception,an analytical model of a pneumatic catapult is established on basis of the conservations of mass and energy.The model consists of a high-pressure chamber and a low-pressure chamber connected by multiple valves,and there is a movable piston in the low-pressure chamber that can push an aircraft to accelerate.The effects of the launch readiness state of SCD in the high-pressure chamber,the initial volume of the low-pressure chamber and the valve control on the movement of the aircraft are analyzed.It is found that there is a restrictive relation between the temperature and pressure of the launch readiness state of SCD,i.e.,there is a maximum allowable launch readiness pressure when the launch readiness temperature is fixed.If this restrictive relation is not satisfied,the working medium in the low-pressure chamber will drop to its triple point within a few milliseconds,leading to a launch failure.Owing to this restrictive relation,there is an optimal launch readiness state of SCD with the highest working capacity for any allowable launch readiness temperature.The pressure of the low-pressure chamber will decrease significantly as the initial volume increases,leading to a decreased acceleration of the aircraft.The acceleration can be controlled below a critical value by a designed sequential blasting technique of multiple valves.The calculated results show that a 500 kg aircraft can be accelerated from 0 to 58 m/s in 0.9 s with 36 kg of carbon dioxide.This research provides a new technique for the controllable cold launch of an aircraft.展开更多
The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by...The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.展开更多
A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, str...A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, stress-strain relation, and deformation and strength characteristics of reactive Mg O treated silt soils. The soils treated with reactive Mg O at various contents were subjected to accelerated carbonation for different periods of time and later, UCTs were performed on them. The results demonstrate that the reactive Mg O content and carbonation time have remarkable influences on the aforementioned engineering properties of the soils. It is found that with the increase in reactive Mg O content, the unconfined compressive strength(qu) increases at a given carbonation time(<10 h), whereas the water content and amounts of crack of the soils decrease. A threshold content of reactive Mg O exists at approximately 25% and a critical carbonation time exists at about 10 h for the development of qu. A simple yet practical strength-prediction model, by taking into account two variables of reactive Mg O content and carbonation time, is proposed to estimate qu of carbonated reactive Mg O treated soils. A comparison of the predicated values of qu with the measured ones indicates that the proposed model has satisfactory accuracy.展开更多
Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and ...Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and cross-section analysis techniques.With the increase in CO_(2) partial pressure,the average corrosion rate increased first and then decreased.The average corrosion rate reached the maximum value under the near-critical pressure.When CO_(2) partial pressure further increased to be above the critical pressure,the average corrosion rate gradually decreased and local aggregation of molecules was weakened.展开更多
Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temper...Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.展开更多
Recent research progress on the use of Ni-based catalysts supported by various carbon materials,such as carbon nanotubes,graphene,and activated carbon,for the hydrogenation of CO_(2)to CH4 is summarized.The influence ...Recent research progress on the use of Ni-based catalysts supported by various carbon materials,such as carbon nanotubes,graphene,and activated carbon,for the hydrogenation of CO_(2)to CH4 is summarized.The influence of additives and surface modification methods on improving their catalytic performance is discussed as is the reaction mechanism,especially the structurefunction relationship produced by the carbon.The review provides a comprehensive directory for the rational design of carbon-supported Ni-based catalysts for the methanation of CO_(2).展开更多
The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the all...The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.展开更多
In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that ...In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that doping CsPbCl_(3) halide perovskite nanocrystals with nickel ions(Ni^(2+))and applying an external magnetic field can significantly enhance the performance of the photocatalytic carbon dioxide reduction reaction(CO_(2)RR).Compared with its counterpart,Ni-doped CsPbCl_(3) exhibits a sixfold increase in CO_(2)RR efficiency under a 500 mT magnetic field.Insights into the mechanism of this enhancement effect were obtained through photogenerated current density measurements and X-ray magnetic circular dichroism.The results illustrate that the significant enhancement in catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field,leading to reduced electron‒hole recombination and extended carrier lifetimes.This study provides an effective strategy for enhancing the efficiency of the photocatalytic CO_(2)RR by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field.展开更多
Solving the problems of carbon dioxide(CO_(2))emissions and energy scarcity by the development of highly selective,cost-effective,and reliable catalysts for the electrochemical reduction of CO_(2)to useful carbon-base...Solving the problems of carbon dioxide(CO_(2))emissions and energy scarcity by the development of highly selective,cost-effective,and reliable catalysts for the electrochemical reduction of CO_(2)to useful carbon-based products would be very helpful.We report the synthesis of an efficient graphene-supported bismuth single-atom catalyst(BiSA-G)featuring a BiN_(4)coordination structure for this purpose.The synthesis used tannic acid as a multifunctional ligand and ammonia as a nitrogen dopant.Using a scalable coordination chemistry approach,BiN_(4)sites were uniformly dispersed on the graphene substrate and were found to have an outstanding ability for the conversion of CO_(2)to CO,with a high Faradaic efficiency of 97.4%at−0.55 V(vs.RHE)and a high turnover frequency of 5230 h^(−1)along with outstanding stability.Density functional theory calculations confirmed that the BiN_(4)site serves as the dominant active center,simultaneously facilitating CO_(2)activation and the efficient formation of the crucial intermediate*COOH with a reduced free energy barrier.This discovery offers a new way for the atomic-scale design of high-efficiency catalysts for the electrochemical CO_(2)reduction reaction,potentially helping sustainable carbon use.展开更多
基金This work was funded by the National Natural Science Foundation of China(No.51576188).
文摘Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon dioxide is close to room temperature,making SCD a potential new working medium for pneumatic launch.To analyze the feasibility of this conception,an analytical model of a pneumatic catapult is established on basis of the conservations of mass and energy.The model consists of a high-pressure chamber and a low-pressure chamber connected by multiple valves,and there is a movable piston in the low-pressure chamber that can push an aircraft to accelerate.The effects of the launch readiness state of SCD in the high-pressure chamber,the initial volume of the low-pressure chamber and the valve control on the movement of the aircraft are analyzed.It is found that there is a restrictive relation between the temperature and pressure of the launch readiness state of SCD,i.e.,there is a maximum allowable launch readiness pressure when the launch readiness temperature is fixed.If this restrictive relation is not satisfied,the working medium in the low-pressure chamber will drop to its triple point within a few milliseconds,leading to a launch failure.Owing to this restrictive relation,there is an optimal launch readiness state of SCD with the highest working capacity for any allowable launch readiness temperature.The pressure of the low-pressure chamber will decrease significantly as the initial volume increases,leading to a decreased acceleration of the aircraft.The acceleration can be controlled below a critical value by a designed sequential blasting technique of multiple valves.The calculated results show that a 500 kg aircraft can be accelerated from 0 to 58 m/s in 0.9 s with 36 kg of carbon dioxide.This research provides a new technique for the controllable cold launch of an aircraft.
基金Project(2010CB227103) supported by the National Basic Research Program of ChinaProjects(50930007,50836005) supported by the Key Program of the National Natural Science Foundation of ChinaProject(U1034005) supported by the National Natural Science Foundation of China
文摘The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.
基金Projects(41330641,51279032,51278100)supported by(Major Program of)the National Natural Science Foundation of ChinaProject(41330641)supported by National Technology Support Program during the Twelfth Five-Year Plan of China+1 种基金Project(KYLX_0147)supported by Graduate Student Scientific Research Innovation Program of Jiangsu Province,ChinaProject(BK2012022)supported by the Natural Science Foundation of Jiangsu Province,China
文摘A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, stress-strain relation, and deformation and strength characteristics of reactive Mg O treated silt soils. The soils treated with reactive Mg O at various contents were subjected to accelerated carbonation for different periods of time and later, UCTs were performed on them. The results demonstrate that the reactive Mg O content and carbonation time have remarkable influences on the aforementioned engineering properties of the soils. It is found that with the increase in reactive Mg O content, the unconfined compressive strength(qu) increases at a given carbonation time(<10 h), whereas the water content and amounts of crack of the soils decrease. A threshold content of reactive Mg O exists at approximately 25% and a critical carbonation time exists at about 10 h for the development of qu. A simple yet practical strength-prediction model, by taking into account two variables of reactive Mg O content and carbonation time, is proposed to estimate qu of carbonated reactive Mg O treated soils. A comparison of the predicated values of qu with the measured ones indicates that the proposed model has satisfactory accuracy.
基金Project(21JCQN0066)supported by the Youth Science&Technology Foundation of Sichuan Province,China。
文摘Corrosion behaviors of P110 and N80 tubular steels in CO_(2) gas phase and supercritical(S-CO_(2))phase in a saturated water vapor environment were explored in corrosion weight loss experiments by SEM,EDS,XRD,XPS and cross-section analysis techniques.With the increase in CO_(2) partial pressure,the average corrosion rate increased first and then decreased.The average corrosion rate reached the maximum value under the near-critical pressure.When CO_(2) partial pressure further increased to be above the critical pressure,the average corrosion rate gradually decreased and local aggregation of molecules was weakened.
基金supported by the National Natural Science Foundation of China(52106276 and 52130601).
文摘Building a lunar human base is one of the important goals of human lunar exploration.This paper proposes a method for the production of oxygen by combining photothermal synergistic water decomposition with high-temperature carbon dioxide electrolysis,utilizing the full solar spectrum.The optimal oxygen production rates under different solid oxide electrolysis cell inlet temperatures T_(e),ultraviolet(UV)separation wavelengths λ_(2),infrared(IR)separation wavelengths,and photovoltaic cell materials were explored.The results indicate that the inlet temperature of the solid oxide electrolysis cell should be as high as possible so that more carbon dioxide can be converted into carbon monoxide and oxygen.Furthermore,when the ultraviolet separation wavelength is approximately 385 nm,the proportion of solar energy allocated to the photoreaction and electrolysis cell is optimal,and the oxygen production rate is highest at 2.754×10^(-4) mol/s.Moreover,the infrared separation wavelength should be increased as much as possible within the allowable range to increase the amount of solar radiation allocated to the electrolysis cell to improve the rate of oxygen generation.In addition,copper indium gallium selenide(CIGS)has a relatively large separation wavelength,which can result in a high oxygen production rate of 3.560×10^(-4) mol/s.The proposed integrated oxygen production method can provide a feasible solution for supplying oxygen to a lunar human base.
文摘Recent research progress on the use of Ni-based catalysts supported by various carbon materials,such as carbon nanotubes,graphene,and activated carbon,for the hydrogenation of CO_(2)to CH4 is summarized.The influence of additives and surface modification methods on improving their catalytic performance is discussed as is the reaction mechanism,especially the structurefunction relationship produced by the carbon.The review provides a comprehensive directory for the rational design of carbon-supported Ni-based catalysts for the methanation of CO_(2).
基金Project(050403)supported by Pre-research Project in the Manned Space Filed of China。
文摘The carbon dioxide removal system is the most critical system for controlling CO2 mass concentration in long-term manned spacecraft.In order to ensure the controlling CO2 mass concentration in the cabin within the allowable range,the state of CO2 removal system needs to be estimated in real time.In this paper,the mathematical model is firstly established that describes the actual system conditions and then the Galerkin-based extended Kalman filter algorithm is proposed for the estimation of the state of CO2.This method transforms partial differential equation to ordinary differential equation by using Galerkin approaching method,and then carries out the state estimation by using extended Kalman filter.Simulation experiments were performed with the qualification of the actual manned space mission.The simulation results show that the proposed method can effectively estimate the system state while avoiding the problem of dimensional explosion,and has strong robustness regarding measurement noise.Thus,this method can establish a basis for system fault diagnosis and fault positioning.
基金supported by the National Key R&D Program of China(2021YFA1501003)the Joint Funds of the National Natural Science Foundation of China(U23A2081)+5 种基金the National Natural Science Foundation of China(92261105,22221003)the Anhui Provincial Key Research and Development Project(2023z04020010,2022a05020053)the Anhui Provincial Natural Science Foundation(2108085UD06,2208085UD04)the USTC Research Funds of the Double First Class Initiative(YD2060002029,YD2060006005)the Fundamental Research Funds for the Central Universities(WK2060000004,WK2060000021,WK2060000025,WK9990000155)the Joint Funds from Hefei National Synchrotron Radiation Laboratory(KY2060000180,KY2060000195).
文摘In recent years,magnetic fields have been widely applied in catalysis to increase the performance of electrocatalysis,photocatalysis,and thermocatalysis through an important noncontact way.This work demonstrated that doping CsPbCl_(3) halide perovskite nanocrystals with nickel ions(Ni^(2+))and applying an external magnetic field can significantly enhance the performance of the photocatalytic carbon dioxide reduction reaction(CO_(2)RR).Compared with its counterpart,Ni-doped CsPbCl_(3) exhibits a sixfold increase in CO_(2)RR efficiency under a 500 mT magnetic field.Insights into the mechanism of this enhancement effect were obtained through photogenerated current density measurements and X-ray magnetic circular dichroism.The results illustrate that the significant enhancement in catalytic performance by the magnetic field is attributed to the synergistic effects of magnetic element doping and the external magnetic field,leading to reduced electron‒hole recombination and extended carrier lifetimes.This study provides an effective strategy for enhancing the efficiency of the photocatalytic CO_(2)RR by manipulating spin-polarized electrons in photocatalytic semiconductors via a noncontact external magnetic field.
文摘Solving the problems of carbon dioxide(CO_(2))emissions and energy scarcity by the development of highly selective,cost-effective,and reliable catalysts for the electrochemical reduction of CO_(2)to useful carbon-based products would be very helpful.We report the synthesis of an efficient graphene-supported bismuth single-atom catalyst(BiSA-G)featuring a BiN_(4)coordination structure for this purpose.The synthesis used tannic acid as a multifunctional ligand and ammonia as a nitrogen dopant.Using a scalable coordination chemistry approach,BiN_(4)sites were uniformly dispersed on the graphene substrate and were found to have an outstanding ability for the conversion of CO_(2)to CO,with a high Faradaic efficiency of 97.4%at−0.55 V(vs.RHE)and a high turnover frequency of 5230 h^(−1)along with outstanding stability.Density functional theory calculations confirmed that the BiN_(4)site serves as the dominant active center,simultaneously facilitating CO_(2)activation and the efficient formation of the crucial intermediate*COOH with a reduced free energy barrier.This discovery offers a new way for the atomic-scale design of high-efficiency catalysts for the electrochemical CO_(2)reduction reaction,potentially helping sustainable carbon use.