To realize high-resolution digital beamforming(DBF)of ultra-wideband(UWB) signals, we propose a DBF method based on Carath ′eodory representation for delay compensation and array extrapolation. Delay compensation by ...To realize high-resolution digital beamforming(DBF)of ultra-wideband(UWB) signals, we propose a DBF method based on Carath ′eodory representation for delay compensation and array extrapolation. Delay compensation by Carath ′eodory representation could achieve high interpolation accuracy while using the single channel sampling technique. Array extrapolation by Carath ′eodory representation reformulates and extends each snapshot, consequently extends the aperture of the original uniform linear array(ULA) by several times and provides a better realtime performance than the existing aperture extrapolation utilizing vector extrapolation based on the two dimensional autoregressive(2-D AR) model. The UWB linear frequency modulated(LFM) signal is used for simulation analysis. Simulation results demonstrate that the proposed method is featured by a much higher spatial resolution than traditional DBF methods and lower sidelobes than using Lagrange fractional filters.展开更多
基金Supported by The National Natural Science Foundation of China(10771171)555 Innovation Talent Project of Gansu Province(GS-555-CXRC)+1 种基金Technique Innovation Project of Northwest Normal University(NWNU-KJCXGC-212)Important Foundation of Dingxi Teachers College(TD2016ZD06)
基金supported by the National Natural Science Foundation of China(61271331 61571229)
文摘To realize high-resolution digital beamforming(DBF)of ultra-wideband(UWB) signals, we propose a DBF method based on Carath ′eodory representation for delay compensation and array extrapolation. Delay compensation by Carath ′eodory representation could achieve high interpolation accuracy while using the single channel sampling technique. Array extrapolation by Carath ′eodory representation reformulates and extends each snapshot, consequently extends the aperture of the original uniform linear array(ULA) by several times and provides a better realtime performance than the existing aperture extrapolation utilizing vector extrapolation based on the two dimensional autoregressive(2-D AR) model. The UWB linear frequency modulated(LFM) signal is used for simulation analysis. Simulation results demonstrate that the proposed method is featured by a much higher spatial resolution than traditional DBF methods and lower sidelobes than using Lagrange fractional filters.
基金Supported by the National Natural Science Foundation of China (11071053)the Natural Science Foundation of Hebei Province (A2010001482)the Key Project of Science and Research of Hebei Education Department (ZH2012080)