The capillary force of a liquid bridge with a pinned contact line between a small disk and a parallel plate is investigated by simulation and experiments. The numerical minimization simulation method is utilized to ca...The capillary force of a liquid bridge with a pinned contact line between a small disk and a parallel plate is investigated by simulation and experiments. The numerical minimization simulation method is utilized to calculate the capillary force. The results show excellent agreement with the Young-Laplace equation method. An experimental setup is built to measure the capillary force. The experimental results indicate that the simulation results agree well with the measured forces at large separation distances, while some deviation may occur due to the transition from the advancing contact angle to the receding one at small distances. It is also found that the measured rupture distance is slightly larger than the simulation value due to the effect of the viscous interaction inside the liquid bridge.展开更多
A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated sil...A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.展开更多
The conventional liquid electrolytes(LEs) have a high level of ionic conductivity;however, they often suffer from the poor processability and safety risks of potential leakage. Although solid-state electrolytes(SSEs) ...The conventional liquid electrolytes(LEs) have a high level of ionic conductivity;however, they often suffer from the poor processability and safety risks of potential leakage. Although solid-state electrolytes(SSEs) can solve these inherent problems of LEs, the ionic conductivity of most SSEs is several magnitudes lower than these of LEs. Herein, we report a novel strategy by building liquid ion-transport channels in a solid framework and prepared an electrolyte-locked separator(ELS) using a collagen fiber membrane(CFm). The liquid electrolyte was primarily infiltrated in the smaller voids of CFm, and its ionic conductivity could attain to 9.0×10-3 S cm-1 when the electrolyte absorption(EA) reached up to 112.0%. After centrifuging treatment, the electrolyte retentions(ER) and ionic conductivities of ELS were 108.93% and 8.37×10-3 S cm-1, respectively, which were much higher than those of commercial cellulose separator(CS), exerting excellent liquid-locking performances. In particular, the electrical double-layer capacitors(EDLC) assembled by ELS or CS were characterized and exhibited similar electrochemical performance,demonstrating the satisfactory ability and applicability of ELS for commercial use. In addition, the ELSbased EDLC exhibited favorable flexibility with relative lower loss of capacitance under different angles of bending.展开更多
To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experimen...To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experiments were used to validate the effects of using surfactants;the results show that after dealing with vacuum saturation with water,the volume of micropores decreases,which results in a larger average pore size,and the volume of transitional pores,mesopores,macropores and total pores increases.Based on the distribution of pore size,the operation mode of ‘‘water infusion after gas extraction,then continuing gas extraction" is recommended to improve the volume of coal mine gas drainage.When the reflectance of vitrinite in coal samples is less than 1,using the surfactants Fast T,1631,APG,BS can mitigate the damage caused by the water blocking effect.But when the reflectance of vitrinite is larger than 1.4,the damage caused by the water blocking effect can be increased.When the surfactant CMC is used in hydraulic applications,the capillary forces of coal samples are almost negative,which means the capillary force is in the same direction as the gas extraction.The direction of capillary forces benefits the gas flow.So,using CMC can play an active role in removing the water blocking effect.Centrifugal experiments confirm that using CMC can effectively remove the water blocking effect,which has a beneficial effect on improving the gas drainage volume.展开更多
Depositing single-walled carbon nanotubes(SWNTs) with controllable density, pattern and orientation on electrodes presents a challenge in today's research. Here, we report a novel solvent evaporation method to ali...Depositing single-walled carbon nanotubes(SWNTs) with controllable density, pattern and orientation on electrodes presents a challenge in today's research. Here, we report a novel solvent evaporation method to align SWNTs in patterns having nanoscale width and micronscale length. SWNTs suspension has been introduced dropwise onto photoresist resin microchannels; and the capillary force can stretch and align SWNTs into strands with nanoscale width in the microchannels. Then these narrow and long aligned SWNTs patterns were successfully transferred to a pair of gold electrodes with different gaps to fabricate carbon nanotube field-effect transistor(CNTFET). Moreover, the electrical performance of the CNTFET show that the SWNTs strands can bridge different gaps and fabricate good electrical performance CNTFET with ON/OFF ratio around 106. This result suggests a promising and simple strategy for assembling well-aligned SWNTs into CNTFET device with good electrical performance.展开更多
基金Supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No 51521003the Self-Planned Task of State Key Laboratory of Robotics and System under Grant No SKLRS201501A04
文摘The capillary force of a liquid bridge with a pinned contact line between a small disk and a parallel plate is investigated by simulation and experiments. The numerical minimization simulation method is utilized to calculate the capillary force. The results show excellent agreement with the Young-Laplace equation method. An experimental setup is built to measure the capillary force. The experimental results indicate that the simulation results agree well with the measured forces at large separation distances, while some deviation may occur due to the transition from the advancing contact angle to the receding one at small distances. It is also found that the measured rupture distance is slightly larger than the simulation value due to the effect of the viscous interaction inside the liquid bridge.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50575123 and 50730007)China Scholarship Council (CSC) and German Research Foundation (DFG)
文摘A microtribometer is used to measure and compare pull-off forces and friction forces exerted on (a) micro-dimpled silicon surfaces, (b) bare silicon surfaces, and (c) octadecyltrichlorosilane (OTS) treated silicon surfaces at different relative humidity (RH) levels separately. It is found that above a critical RH level, the capillary pull-off force increases abruptly and that the micro-dimple textured surface has a lower critical RH value as well as a higher pull-off force value than the other two surfaces. A micro topography parameter, namely sidewall area ratio, is found to play a major role in controlling the capillary pull-off force. Furthermore, micro-dimpled silicon surface is also proved to be not sensitive to variation in RH level, and can realize a stable and decreased friction coefficient compared with un-textured silicon surfaces. The reservoir-like function of micro dimples is considered to weaken or avoid the breakage effect of liquid bridges at different RH levels, thereby maintaining a stable frictional behaviour.
基金supported by the National Natural Science Foundation of China (21878191)。
文摘The conventional liquid electrolytes(LEs) have a high level of ionic conductivity;however, they often suffer from the poor processability and safety risks of potential leakage. Although solid-state electrolytes(SSEs) can solve these inherent problems of LEs, the ionic conductivity of most SSEs is several magnitudes lower than these of LEs. Herein, we report a novel strategy by building liquid ion-transport channels in a solid framework and prepared an electrolyte-locked separator(ELS) using a collagen fiber membrane(CFm). The liquid electrolyte was primarily infiltrated in the smaller voids of CFm, and its ionic conductivity could attain to 9.0×10-3 S cm-1 when the electrolyte absorption(EA) reached up to 112.0%. After centrifuging treatment, the electrolyte retentions(ER) and ionic conductivities of ELS were 108.93% and 8.37×10-3 S cm-1, respectively, which were much higher than those of commercial cellulose separator(CS), exerting excellent liquid-locking performances. In particular, the electrical double-layer capacitors(EDLC) assembled by ELS or CS were characterized and exhibited similar electrochemical performance,demonstrating the satisfactory ability and applicability of ELS for commercial use. In addition, the ELSbased EDLC exhibited favorable flexibility with relative lower loss of capacitance under different angles of bending.
基金financially supported by the National Natural Science Foundation of China (No.51504084)the Education Department of Fujian Province (No.JA15493)
文摘To research techniques for removing the water blocking effect caused by hydraulic applications in coal seams,the use of surfactants is proposed,based on the mechanics of the water blocking effect.Centrifugal experiments were used to validate the effects of using surfactants;the results show that after dealing with vacuum saturation with water,the volume of micropores decreases,which results in a larger average pore size,and the volume of transitional pores,mesopores,macropores and total pores increases.Based on the distribution of pore size,the operation mode of ‘‘water infusion after gas extraction,then continuing gas extraction" is recommended to improve the volume of coal mine gas drainage.When the reflectance of vitrinite in coal samples is less than 1,using the surfactants Fast T,1631,APG,BS can mitigate the damage caused by the water blocking effect.But when the reflectance of vitrinite is larger than 1.4,the damage caused by the water blocking effect can be increased.When the surfactant CMC is used in hydraulic applications,the capillary forces of coal samples are almost negative,which means the capillary force is in the same direction as the gas extraction.The direction of capillary forces benefits the gas flow.So,using CMC can play an active role in removing the water blocking effect.Centrifugal experiments confirm that using CMC can effectively remove the water blocking effect,which has a beneficial effect on improving the gas drainage volume.
基金the financial supports of NSFC(No.20805033 and 30901199)SRF for ROCS,SEM(2008890-19-9)Doctoral Education Fund for New Teachers(200806101048)
文摘Depositing single-walled carbon nanotubes(SWNTs) with controllable density, pattern and orientation on electrodes presents a challenge in today's research. Here, we report a novel solvent evaporation method to align SWNTs in patterns having nanoscale width and micronscale length. SWNTs suspension has been introduced dropwise onto photoresist resin microchannels; and the capillary force can stretch and align SWNTs into strands with nanoscale width in the microchannels. Then these narrow and long aligned SWNTs patterns were successfully transferred to a pair of gold electrodes with different gaps to fabricate carbon nanotube field-effect transistor(CNTFET). Moreover, the electrical performance of the CNTFET show that the SWNTs strands can bridge different gaps and fabricate good electrical performance CNTFET with ON/OFF ratio around 106. This result suggests a promising and simple strategy for assembling well-aligned SWNTs into CNTFET device with good electrical performance.