Cancer stem cells(CSCs)are the driving force for sustainable tumor growth and metastasis and responsible for drug resistance and cancer relapse.Nanoparticle-based drug delivery has been demonstrated to be effective in...Cancer stem cells(CSCs)are the driving force for sustainable tumor growth and metastasis and responsible for drug resistance and cancer relapse.Nanoparticle-based drug delivery has been demonstrated to be effective in combating tumor growth.However,it has been challenging to selectively eliminate CSCs due to the lack of a general signature for a spectrum of cancers.It is known that CSCs from various types of cancer show lower stiffness compared to non-CSCs.It remains unclear whether low stiffness in CSCs influences cellular uptake in nanoparticle-based drug delivery and thus the chemotherapy efficacy.Graphene quantum dot(GQD)is emerging as a promising carrier material in delivering anti-cancer drugs.We found that breast CSCs were softer than conventional cancer cells,which were further softer compared to healthy breast tissue cells.Importantly,soft CSCs uptook more GQD than conventional cancer cells,while stiff breast cancer cells with relatively low stiffness uptook more GQD than healthy breast cells.Softening cells by pharmacologically inhibiting actomyosin activity using either siRNA or actomyosin inhibitors significantly enhanced the cellular uptake of GQD in breast cancer cells but not CSCs,while stiffening cells by activating actomyosin using CA-MLCK/ROCK or actomyosin activators considerably suppressed the nanoparticle uptake in both cancer cells and CSCs.GQD could specifically target CSC because of low cell stiffness of CSC in breast cancer cell line MCF-7 and MDA-MB-231.Further regulating cell stiffness reflected that decreasing breast cancer cell stiffness by inhibiting actomyosin activity using blebbistatin could promote GQD uptake.Vice versa,stiffening cancer cell by activating actomyosin decreased GQD uptake.The attachment of anti-cancer drug doxorubicin did not alter the trend of GQD uptake in neither soften nor stiffen cancer cells.Actomyosin activity regulates cellular uptake ofGQD might through clathrin and caveolin-mediated endocytosis.Cancer cells are softer than normal cells from the same organ,CSC are softer than non-CSC.Thus we further confirmed that the GQD uptake of normal breast cell line MCF-10 is less than breast cancer cell line MCF-7 and MDA-MB-231.Suggesting the clinical significance that using GQD as drug carrier targeting softer cells could reduce side effects to normal tissue cells.Since CSC are softer than non-CSC,GQD could decreased the percentage of CSC in whole cancer cell population by targeting softer cells.These results suggesting that it would be possible to target cancer cells and CSC by targeting from a perspective of cell mechanical difference.High uptake of nanoparticles in soft cancer cells could not be explained by their differential membrane potentials.Mechanistically,low cell mechanics or inhibiting actomyosin activity activated both clathrin and caveolin-mediated endocytosis signaling pathways,while high cell mechanics or activating actomyosin suppressed these signalings.Pharmacologically inhibiting clathrin or caveolin-mediated endocytosis signaling significantly decreased GQD uptake in CSCs and in conventional breast cancer cells when actomyosin was suppressed.Further,GQD conjugated with doxorubicin could be specifically delivered into CSCs with low stiffness and eliminated more CSCs in the presence of both CSCs and non-CSCs.Taken together,these data reveal the regulatory role of cell mechanics in cellular uptake of nanoparticles and demonstrate that GQD can be utilized to specifically eliminate CSCs,which have important implications in nanoparticle-based drug delivery for cancer therapy.展开更多
OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS Th...OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS The effect of scutellarin on the growth of HT-29CSC was determined by 3D Culture assay.The effect of scutellarin on growth and transformation of HT-29CSC was probed by soft agar colony formation assay.The effect of scutellarin on the differentiation of HT-29CSC was determined by serum induction differentiation assay in vitro.The effects of scutellarin on the expressions of marker gene Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog gene were measured by quantitative real-time RT-PCR.Investigate the effect of scutellarin on the expression of c-Myc,Gli1,and Lgr5 protein by Western blotting.A subcutaneous xenograft model of colon cancer in nude mice was established and administered by intraperitoneal injection.The change of body weight and tumor size of nude mice were observed every two days.Investi⁃gate the effects of scutellarin on the growth of xenograft tumors in nude mice.The expression of CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,Nanog gene in tumors were measured by quantitative real-time RT-PCR.The expression of c-Myc,Gli1,Lgr5,CD133,Ki67 protein were measured by Western blotting.RESULTS Scutellarin can inhibit the growth of HT-29CSC in 3D culture.Compared with the solvent control group,scutellarin can significantly inhibit the growth and transformation and differentiation of HT-29CSC in vitro(P<0.01).The expression levels of marker genes Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog in HT-29CSC were down-regulated by scutellarin.Scutellarin can reduce the expression of c-Myc,Gli1,and Lgr5 protein in HT-29CSC.Scutellarin can inhibit the growth of colon cancer xenografts,lower CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,and Nanog mRNA level of xenograft tumors,reduce the expression of c-Myc,Gli1,Lgr5,CD133,and Ki67 protein of xenograft tumors in nude mice.CONCLUSION Scutellarin,which is the main component of scutellaria barbata,can inhibit the differentiation of HT-29CSC and the mechanism is to inhibit the activity of Hedgehog signaling pathway.展开更多
OBJECTIVE The eradication of cancer stem cells(CSCs) is signifcant for cancer therapy and prevention.METHODS In this study,we evaluated WM130,a novel derivative of matrine,for its effect on CSCs using human hepatocell...OBJECTIVE The eradication of cancer stem cells(CSCs) is signifcant for cancer therapy and prevention.METHODS In this study,we evaluated WM130,a novel derivative of matrine,for its effect on CSCs using human hepatocellular carcinoma(HCC) cell lines,their sphere cells,and sorted EpCAM+cells.RESULTS We revealed that WM130 could not only inhibit proliferation and colony formation of HCC cells,but also suppress the expression of some stemness-related genes and up-regulate some mature hepatocyte marker genes,indicating a promotion of differentiation from CSCs to hepatocytes.WM130 also suppressed the proliferation of doxorubicin-resistant hepatoma cells,and markedly reduced the cells with CSC biomarker EpCAM.Moreover,WM130 suppressed HCC spheres,not only primary spheres but also subsequent spheres,indicating an inhibitory effect on self-renewal capability of CSCs.Interestingly,WM130 exhibiteda remarkable inhibitory preference on HCC spheres and EpCAM+cells rather than their parental HCC cells and EpCAM-cells respectively.In vivo,WM130 inhibited HCC xenograft growth,decreased the number of sphere-forming cells,and remarkably decreased the levels of EpCAM mRNA and protein in tumor xenografts.Better inhibitory effect was achieved by WM130 in combination with doxorubicin.Further mechanism study revealed that WM130 inhibited AKT/GSK3β/β-catenin signaling pathway.CONCLUSION Collectively,our results suggest that WM130 remark.ably inhibits hepatic CSCs,and this effect may via the down-regulation of the AKT/GSK3β/β-catenin pathway.These findings provide a strong rationale for the use of WM130 as a novel drug candidate in HCC therapy.展开更多
文摘Cancer stem cells(CSCs)are the driving force for sustainable tumor growth and metastasis and responsible for drug resistance and cancer relapse.Nanoparticle-based drug delivery has been demonstrated to be effective in combating tumor growth.However,it has been challenging to selectively eliminate CSCs due to the lack of a general signature for a spectrum of cancers.It is known that CSCs from various types of cancer show lower stiffness compared to non-CSCs.It remains unclear whether low stiffness in CSCs influences cellular uptake in nanoparticle-based drug delivery and thus the chemotherapy efficacy.Graphene quantum dot(GQD)is emerging as a promising carrier material in delivering anti-cancer drugs.We found that breast CSCs were softer than conventional cancer cells,which were further softer compared to healthy breast tissue cells.Importantly,soft CSCs uptook more GQD than conventional cancer cells,while stiff breast cancer cells with relatively low stiffness uptook more GQD than healthy breast cells.Softening cells by pharmacologically inhibiting actomyosin activity using either siRNA or actomyosin inhibitors significantly enhanced the cellular uptake of GQD in breast cancer cells but not CSCs,while stiffening cells by activating actomyosin using CA-MLCK/ROCK or actomyosin activators considerably suppressed the nanoparticle uptake in both cancer cells and CSCs.GQD could specifically target CSC because of low cell stiffness of CSC in breast cancer cell line MCF-7 and MDA-MB-231.Further regulating cell stiffness reflected that decreasing breast cancer cell stiffness by inhibiting actomyosin activity using blebbistatin could promote GQD uptake.Vice versa,stiffening cancer cell by activating actomyosin decreased GQD uptake.The attachment of anti-cancer drug doxorubicin did not alter the trend of GQD uptake in neither soften nor stiffen cancer cells.Actomyosin activity regulates cellular uptake ofGQD might through clathrin and caveolin-mediated endocytosis.Cancer cells are softer than normal cells from the same organ,CSC are softer than non-CSC.Thus we further confirmed that the GQD uptake of normal breast cell line MCF-10 is less than breast cancer cell line MCF-7 and MDA-MB-231.Suggesting the clinical significance that using GQD as drug carrier targeting softer cells could reduce side effects to normal tissue cells.Since CSC are softer than non-CSC,GQD could decreased the percentage of CSC in whole cancer cell population by targeting softer cells.These results suggesting that it would be possible to target cancer cells and CSC by targeting from a perspective of cell mechanical difference.High uptake of nanoparticles in soft cancer cells could not be explained by their differential membrane potentials.Mechanistically,low cell mechanics or inhibiting actomyosin activity activated both clathrin and caveolin-mediated endocytosis signaling pathways,while high cell mechanics or activating actomyosin suppressed these signalings.Pharmacologically inhibiting clathrin or caveolin-mediated endocytosis signaling significantly decreased GQD uptake in CSCs and in conventional breast cancer cells when actomyosin was suppressed.Further,GQD conjugated with doxorubicin could be specifically delivered into CSCs with low stiffness and eliminated more CSCs in the presence of both CSCs and non-CSCs.Taken together,these data reveal the regulatory role of cell mechanics in cellular uptake of nanoparticles and demonstrate that GQD can be utilized to specifically eliminate CSCs,which have important implications in nanoparticle-based drug delivery for cancer therapy.
基金National Natural Science Foundation of China(8157381381173598)+1 种基金Excellent Talent Program of Chengdu University of Traditional Chinese Medicine(YXRC2019002)Fund of Scientific Research Innovation Team Construction in Sichuan Provincial University(18TD0017)
文摘OBJECTIVE To investigate the inhibitory effect of scutellarin on the self-renewal and differentiation of HT-29 cells-derived cancer stem-like cells(HT-29CSC)in vitro and in vivo,and to explore its mechanism.METHODS The effect of scutellarin on the growth of HT-29CSC was determined by 3D Culture assay.The effect of scutellarin on growth and transformation of HT-29CSC was probed by soft agar colony formation assay.The effect of scutellarin on the differentiation of HT-29CSC was determined by serum induction differentiation assay in vitro.The effects of scutellarin on the expressions of marker gene Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog gene were measured by quantitative real-time RT-PCR.Investigate the effect of scutellarin on the expression of c-Myc,Gli1,and Lgr5 protein by Western blotting.A subcutaneous xenograft model of colon cancer in nude mice was established and administered by intraperitoneal injection.The change of body weight and tumor size of nude mice were observed every two days.Investi⁃gate the effects of scutellarin on the growth of xenograft tumors in nude mice.The expression of CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,Nanog gene in tumors were measured by quantitative real-time RT-PCR.The expression of c-Myc,Gli1,Lgr5,CD133,Ki67 protein were measured by Western blotting.RESULTS Scutellarin can inhibit the growth of HT-29CSC in 3D culture.Compared with the solvent control group,scutellarin can significantly inhibit the growth and transformation and differentiation of HT-29CSC in vitro(P<0.01).The expression levels of marker genes Lgr5,target gene c-Myc,proliferation gene CK20 and Nanog in HT-29CSC were down-regulated by scutellarin.Scutellarin can reduce the expression of c-Myc,Gli1,and Lgr5 protein in HT-29CSC.Scutellarin can inhibit the growth of colon cancer xenografts,lower CD133,Lgr5,Gli1,Ptch1,c-Myc,Ki67,CK20,and Nanog mRNA level of xenograft tumors,reduce the expression of c-Myc,Gli1,Lgr5,CD133,and Ki67 protein of xenograft tumors in nude mice.CONCLUSION Scutellarin,which is the main component of scutellaria barbata,can inhibit the differentiation of HT-29CSC and the mechanism is to inhibit the activity of Hedgehog signaling pathway.
基金supported by National Natural Science Foundation of China(81270508)National Major Special Science and Technology Project(2012ZX09103101-043)
文摘OBJECTIVE The eradication of cancer stem cells(CSCs) is signifcant for cancer therapy and prevention.METHODS In this study,we evaluated WM130,a novel derivative of matrine,for its effect on CSCs using human hepatocellular carcinoma(HCC) cell lines,their sphere cells,and sorted EpCAM+cells.RESULTS We revealed that WM130 could not only inhibit proliferation and colony formation of HCC cells,but also suppress the expression of some stemness-related genes and up-regulate some mature hepatocyte marker genes,indicating a promotion of differentiation from CSCs to hepatocytes.WM130 also suppressed the proliferation of doxorubicin-resistant hepatoma cells,and markedly reduced the cells with CSC biomarker EpCAM.Moreover,WM130 suppressed HCC spheres,not only primary spheres but also subsequent spheres,indicating an inhibitory effect on self-renewal capability of CSCs.Interestingly,WM130 exhibiteda remarkable inhibitory preference on HCC spheres and EpCAM+cells rather than their parental HCC cells and EpCAM-cells respectively.In vivo,WM130 inhibited HCC xenograft growth,decreased the number of sphere-forming cells,and remarkably decreased the levels of EpCAM mRNA and protein in tumor xenografts.Better inhibitory effect was achieved by WM130 in combination with doxorubicin.Further mechanism study revealed that WM130 inhibited AKT/GSK3β/β-catenin signaling pathway.CONCLUSION Collectively,our results suggest that WM130 remark.ably inhibits hepatic CSCs,and this effect may via the down-regulation of the AKT/GSK3β/β-catenin pathway.These findings provide a strong rationale for the use of WM130 as a novel drug candidate in HCC therapy.