The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some w...The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.展开更多
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du...Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.展开更多
基金National Natural Science Foundation of China(grant number 61801512,grant number 62071484)Natural Science Foundation of Jiangsu Province(grant number BK20180080)to provide fund for conducting experiments。
文摘The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.
基金National Natural Science Foundation of China(Grant Nos.62005049 and 62072110)Natural Science Foundation of Fujian Province(Grant No.2020J01451).
文摘Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.