Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink...Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.展开更多
Propose a new degradation call admission control(DCAC)scheme, which can be used in wideband code division multiple access communication system. So-called degradation is that non-real time call has the characteristic...Propose a new degradation call admission control(DCAC)scheme, which can be used in wideband code division multiple access communication system. So-called degradation is that non-real time call has the characteristic of variable bit rate, so decreasing its bit rate can reduce the load of the system, consequently the system can admit new call which should be blocked when the system is close to full load, therefore new call's access probability increases. This paper brings forward design project and does system simulation, simulation proves that DCAC can effectively decrease calls' blocking probability and increase the total number of the on-line users.展开更多
To address the issue of resource scarcity in wireless communication, a novel dynamic call admission control scheme for wireless mobile network was proposed. The scheme established a reward computing model of call admi...To address the issue of resource scarcity in wireless communication, a novel dynamic call admission control scheme for wireless mobile network was proposed. The scheme established a reward computing model of call admission of wireless cell based on Markov decision process, dynamically optimized call admission process according to the principle of maximizing the average system rewards. Extensive simulations were conducted to examine the performance of the model by comparing with other policies in terms of new call blocking probability, handoff call dropping probability and resource utilization rate. Experimental results show that the proposed scheme can achieve better adaptability to changes in traffic conditions than existing protocols. Under high call traffic load, handoff call dropping probability and new call blocking probability can be reduced by about 8%, and resource utilization rate can be improved by 2%-6%. The proposed scheme can achieve high source utilization rate of about 85%.展开更多
Differentiated services (DiffServ) and MPLS are two major building blocks for providing multi-class services over IP networks. In order to respond to the need for relatively simple, coarse methods of providing differe...Differentiated services (DiffServ) and MPLS are two major building blocks for providing multi-class services over IP networks. In order to respond to the need for relatively simple, coarse methods of providing different levels of service for Internet traffic, to support various types of applications and specific business requirements, the MPLS network infrastructure and the DiffServ traffic model will work together. Meanwhile, in today’s environment of multiple service networks, it is necessary for the node in the networks to perform the control mechanism to guarantee various QoS. In展开更多
Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very sca...Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.展开更多
针对工业物联网中业务需求多样性和服务质量(Quality of Service,QoS)要求差异性导致的网络资源利用低问题,提出一种基于深度强化学习的网络切片资源分配策略。该策略运用深度强化学习优化网络切片资源分配的准入控制,通过智能体在特定...针对工业物联网中业务需求多样性和服务质量(Quality of Service,QoS)要求差异性导致的网络资源利用低问题,提出一种基于深度强化学习的网络切片资源分配策略。该策略运用深度强化学习优化网络切片资源分配的准入控制,通过智能体在特定时间窗口内处理资源请求,并根据不同网络切片的QoS要求及请求准入结果进行资源的动态分配。实验结果表明,所提策略相比基准算法在提高网络收益、资源利用率和接收率方面分别提升了8.33%、9.84%和8.57%。该策略能够在保证服务质量的同时提高整个网络的效率和性能。展开更多
为在保证QoS的前提下提升无线网络的接纳容量,研究了无线网络业务的自相似特征,将其与QoS参数共同引入到服务带宽的计算当中,提出基于服务带宽优化并具有自主特性的SS-CAC(self-organized based on network similarity call admission c...为在保证QoS的前提下提升无线网络的接纳容量,研究了无线网络业务的自相似特征,将其与QoS参数共同引入到服务带宽的计算当中,提出基于服务带宽优化并具有自主特性的SS-CAC(self-organized based on network similarity call admission control)策略,用以降低网络带宽利用度及业务阻塞概率。之后对SS-CAC策略进行实现仿真,与在网络中采用传统CAC机制相比,采用SS-CAC不仅可以保证话音业务的质量还可降低2.69%的数据业务平均带宽使用率,同时数据业务的阻塞率和掉话率也在高负载情况下分别下降了0.95%和2.81%。展开更多
基金supported by the National Natural Science Foundation of China (7070102571071105)+2 种基金the Program for New Century Excellent Talents in Universities of China (NCET-08-0396)the National Science Fund for Distinguished Young Scholars of China (70925005)the Program for Changjiang Scholars and Innovative Research Team in University (IRT/028)
文摘Power efficiency and link reliability are of great impor- tance in hierarchical wireless sensor networks (HWSNs), espe- cially at the key level, which consists of sensor nodes located only one hop away from the sink node called OHS. The power and admission control problem in HWSNs is comsidered to improve its power efficiency and link reliability. This problem is modeled as a non-cooperative game in which the active OHSs are con- sidered as players. By applying a double-pricing scheme in the definition of OHSs' utility function, a Nash Equilibrium solution with network properties is derived. Besides, a distributed algorithm is also proposed to show the dynamic processes to achieve Nash Equilibrium. Finally, the simulation results demonstrate the effec- tiveness of the proposed algorithm.
文摘Propose a new degradation call admission control(DCAC)scheme, which can be used in wideband code division multiple access communication system. So-called degradation is that non-real time call has the characteristic of variable bit rate, so decreasing its bit rate can reduce the load of the system, consequently the system can admit new call which should be blocked when the system is close to full load, therefore new call's access probability increases. This paper brings forward design project and does system simulation, simulation proves that DCAC can effectively decrease calls' blocking probability and increase the total number of the on-line users.
基金Project(60873082) supported by the National Natural Science Foundation of ChinaProject(09C794) supported by the Natural Science Foundation of Education Department of Hunan Province, China+1 种基金Project (S2008FJ3078) supported by the Science and Technology Program Foundation of Hunan Province, ChinaProject(07JJ6109) supported by the Natural Science Foundation of Hunan Province, China
文摘To address the issue of resource scarcity in wireless communication, a novel dynamic call admission control scheme for wireless mobile network was proposed. The scheme established a reward computing model of call admission of wireless cell based on Markov decision process, dynamically optimized call admission process according to the principle of maximizing the average system rewards. Extensive simulations were conducted to examine the performance of the model by comparing with other policies in terms of new call blocking probability, handoff call dropping probability and resource utilization rate. Experimental results show that the proposed scheme can achieve better adaptability to changes in traffic conditions than existing protocols. Under high call traffic load, handoff call dropping probability and new call blocking probability can be reduced by about 8%, and resource utilization rate can be improved by 2%-6%. The proposed scheme can achieve high source utilization rate of about 85%.
文摘Differentiated services (DiffServ) and MPLS are two major building blocks for providing multi-class services over IP networks. In order to respond to the need for relatively simple, coarse methods of providing different levels of service for Internet traffic, to support various types of applications and specific business requirements, the MPLS network infrastructure and the DiffServ traffic model will work together. Meanwhile, in today’s environment of multiple service networks, it is necessary for the node in the networks to perform the control mechanism to guarantee various QoS. In
文摘Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.
文摘针对工业物联网中业务需求多样性和服务质量(Quality of Service,QoS)要求差异性导致的网络资源利用低问题,提出一种基于深度强化学习的网络切片资源分配策略。该策略运用深度强化学习优化网络切片资源分配的准入控制,通过智能体在特定时间窗口内处理资源请求,并根据不同网络切片的QoS要求及请求准入结果进行资源的动态分配。实验结果表明,所提策略相比基准算法在提高网络收益、资源利用率和接收率方面分别提升了8.33%、9.84%和8.57%。该策略能够在保证服务质量的同时提高整个网络的效率和性能。
文摘为在保证QoS的前提下提升无线网络的接纳容量,研究了无线网络业务的自相似特征,将其与QoS参数共同引入到服务带宽的计算当中,提出基于服务带宽优化并具有自主特性的SS-CAC(self-organized based on network similarity call admission control)策略,用以降低网络带宽利用度及业务阻塞概率。之后对SS-CAC策略进行实现仿真,与在网络中采用传统CAC机制相比,采用SS-CAC不仅可以保证话音业务的质量还可降低2.69%的数据业务平均带宽使用率,同时数据业务的阻塞率和掉话率也在高负载情况下分别下降了0.95%和2.81%。