Cell reprograming technologies have broad applications in cell therapy,disease modeling and drug screening.Direct reprogramming is the process of converting from one cell type into a very distantly related cell type.I...Cell reprograming technologies have broad applications in cell therapy,disease modeling and drug screening.Direct reprogramming is the process of converting from one cell type into a very distantly related cell type.In this direct conversion process,cells do not proceed through a pluripotent stage,which can be time-consuming and challenging due to spontaneous differentiation.This method also offers the advantage of circumventing the teratoma potential that is associated with using iPSCs.Previous works have demonstrated that with the use of genetic manipulation,fibroblasts can be directly converted into other cell types,including neurons,cardiomyocytes,blood cell progenitors,and hepatocytes.It is well known that the microenvironment can directs cell fate,and in turn cells interact with or remodel their niches.Accumulative evidence suggests that biophysical factors such as the microtopography and mechanical property of cell adhesive substrates regulate a variety of cellular functions such as migration,proliferation and differentiation,which in turn can modulate wound healing,tissue remodeling and tumor growth,but there are limited number of studies on the roles of biophysical cues in cell reprogramming[1].Passive topographical cues offer a simple and effective method to improve reprogramming efficiency without the need for biochemical manipulations.Our previous study has demonstrated that somatic cells cultured on the parallel microgrooves,which can replace the effects of small-molecule epigenetic modifiers and significantly improve the iPSCs reprogramming efficiency.The mechanism relies on the mechanomodulation of the cells’epigenetic state,specifically,an increase of histone H3 acetylation and H3K4 methylation[2].Additionally,in cardiomyocytes reprogramming study,culturing the fibroblasts on microgrooved substrate enhances the expression of cardiomyocyte genes by day 2 and improves the yield of partially reprogrammed cells at day 10.By combining microgrooved substrate with an optimized culture protocol,the conversion from fibroblasts to cardiomyocytes is increased through genetic changes and structural organization of sarcomeres[3].Besides biomaterial topography,recent studies have demonstrated the effects of matrix stiffness on cell reprogramming.For example,a decrease of substrate stiffness can improve the iPSCs reprogramming efficiency,while an intermediate stiffness can significantly enhance the efficiency of neuronal reprogramming [4].Further analysis suggests that intracellular biomechanical changes play an important role in reprogramming process.Cells interact with the biophysical factors in the microenvironment through an'inside-out'and'outside-in'feedback loop,which is mediated by focal adhesions and cytoskeleton [5].Therefore,we investigated the role of the intracellular mechanical structure in cell reprogramming.We showed,for the first time,that the mechanical property of cells was modulated during the early phase of reprogramming as determined by atomic force microscopy(AFM)and high-throughput quantitative deformability cytometry(q-DC).We observed that cell stiffness increased by day 1 during reprogramming process,which was followed by a pronounced decrease within a few days.Examination of actin cytoskeleton showed that actin assembled into a network with a cage-like structure around the nucleus by day 1,but this structure along with the majority of the cytoskeleton gradually disappeared,coinciding with the changes in intracellular mechanical property.Furthermore,inhibition of actin contractility by using small molecules significantly altered the reprogramming efficiency.These findings provide new insights into the mechanisms of how biophysical cues modulate cell fate.In any given physiological microenvironment,cells may experience various of biophysical inputs,which,as we show,may affect cell phenotype changes.展开更多
植被碳利用率作为生物圈与大气圈碳循环的关键参数之一,对了解生态系统碳源和碳汇具有重要作用。本文基于MOD17A2H数据,采用Theil-Sen media趋势分析、空间插值以及偏相关分析法,分析2001~2020年西南地区植被碳利用率(Carbon Use Effici...植被碳利用率作为生物圈与大气圈碳循环的关键参数之一,对了解生态系统碳源和碳汇具有重要作用。本文基于MOD17A2H数据,采用Theil-Sen media趋势分析、空间插值以及偏相关分析法,分析2001~2020年西南地区植被碳利用率(Carbon Use Efficiency,CUE)时空分布格局及变化趋势,根据气象数据和数字高程模型(Digital Elevation Model,DEM)数据,重点研究了西南地区植被CUE对气候变化的响应。结果表明:(1)2001~2020年西南地区不同植被类型年内CUE整体呈上升—下降—再上升—再下降的变化特征,整体上各植被类型CUE呈下降趋势,下降速率依次为:灌木>森林>草地>农作物。(2)近20年西南地区植被CUE多年均值约为0.75,植被固碳能力较强,空间上表现出由南部和东北部向西北部递增的空间分布格局,趋势分析表明西南地区植被CUE整体表现为微弱下降趋势。(3)2001~2020年西南地区植被碳利用率与气温、降水以及日照时长均呈负相关关系,整体上西南地区植被CUE主要受气温和日照时长影响,其次为降水。展开更多
基金supported in part by a grant from the National Institute of Health ( HL121450)UCLA Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research Innovation Award
文摘Cell reprograming technologies have broad applications in cell therapy,disease modeling and drug screening.Direct reprogramming is the process of converting from one cell type into a very distantly related cell type.In this direct conversion process,cells do not proceed through a pluripotent stage,which can be time-consuming and challenging due to spontaneous differentiation.This method also offers the advantage of circumventing the teratoma potential that is associated with using iPSCs.Previous works have demonstrated that with the use of genetic manipulation,fibroblasts can be directly converted into other cell types,including neurons,cardiomyocytes,blood cell progenitors,and hepatocytes.It is well known that the microenvironment can directs cell fate,and in turn cells interact with or remodel their niches.Accumulative evidence suggests that biophysical factors such as the microtopography and mechanical property of cell adhesive substrates regulate a variety of cellular functions such as migration,proliferation and differentiation,which in turn can modulate wound healing,tissue remodeling and tumor growth,but there are limited number of studies on the roles of biophysical cues in cell reprogramming[1].Passive topographical cues offer a simple and effective method to improve reprogramming efficiency without the need for biochemical manipulations.Our previous study has demonstrated that somatic cells cultured on the parallel microgrooves,which can replace the effects of small-molecule epigenetic modifiers and significantly improve the iPSCs reprogramming efficiency.The mechanism relies on the mechanomodulation of the cells’epigenetic state,specifically,an increase of histone H3 acetylation and H3K4 methylation[2].Additionally,in cardiomyocytes reprogramming study,culturing the fibroblasts on microgrooved substrate enhances the expression of cardiomyocyte genes by day 2 and improves the yield of partially reprogrammed cells at day 10.By combining microgrooved substrate with an optimized culture protocol,the conversion from fibroblasts to cardiomyocytes is increased through genetic changes and structural organization of sarcomeres[3].Besides biomaterial topography,recent studies have demonstrated the effects of matrix stiffness on cell reprogramming.For example,a decrease of substrate stiffness can improve the iPSCs reprogramming efficiency,while an intermediate stiffness can significantly enhance the efficiency of neuronal reprogramming [4].Further analysis suggests that intracellular biomechanical changes play an important role in reprogramming process.Cells interact with the biophysical factors in the microenvironment through an'inside-out'and'outside-in'feedback loop,which is mediated by focal adhesions and cytoskeleton [5].Therefore,we investigated the role of the intracellular mechanical structure in cell reprogramming.We showed,for the first time,that the mechanical property of cells was modulated during the early phase of reprogramming as determined by atomic force microscopy(AFM)and high-throughput quantitative deformability cytometry(q-DC).We observed that cell stiffness increased by day 1 during reprogramming process,which was followed by a pronounced decrease within a few days.Examination of actin cytoskeleton showed that actin assembled into a network with a cage-like structure around the nucleus by day 1,but this structure along with the majority of the cytoskeleton gradually disappeared,coinciding with the changes in intracellular mechanical property.Furthermore,inhibition of actin contractility by using small molecules significantly altered the reprogramming efficiency.These findings provide new insights into the mechanisms of how biophysical cues modulate cell fate.In any given physiological microenvironment,cells may experience various of biophysical inputs,which,as we show,may affect cell phenotype changes.