期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Enhancing wear resistance of TiN-coated 1.3343 high-speed steel punches through deep cryogenic treatment and tempering
1
作者 Ferhat CERİTBİNMEZ Fatih HayatiÇAKIR Berkent PARİM 《Journal of Central South University》 2025年第2期350-362,共13页
In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h... In this study,samples obtained from 1.3343 high-speed steel punches with TiN coatings were tested.The samples were subjected to heat treatment at different cryogenic temperatures(<196℃)and durations(12,24 and 36 h),followed by tempering at two different temperatures(200,500℃).For performance testing,a ball-on-disk wear test setup was utilized and a total of 6 groups of samples were examined.The effects of cryo-treatment and tempering on microstructure were revealed through microstructural analysis with scanning electron microscopy(SEM),X-ray(XRD diffraction),and Rietveld analysis.Additionally,the hardness of the punches was measured with microhardness measurements.The optimal wear resistance was observed in the 36 h deep cryo-treated and 200℃tempered samples.The characterization study indicates that by cryogenic treatment a significant portion of the retained austenite transformed into martensite and secondary carbides formed,resulting in improved wear resistance and a slight increase in hardness. 展开更多
关键词 cryogenic treatment high-speed steel PUNCH TIN secondary carbides retained austenite Rietveld analysis
在线阅读 下载PDF
Cryogenic forging effects and mechanisms on surface coarse grain microstructure in H-shaped 7050 aluminum forgings
2
作者 ZHAO Zi-han YI You-ping +2 位作者 HU Jian-liang HUANG Shi-quan HE Hai-lin 《Journal of Central South University》 2025年第6期2009-2021,共13页
This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace appl... This study investigates the differences in microstructural control between cryogenic forging combined with pre-deformation(PCF)and traditional thermal forging(TTF)for 7050 aluminum forgings intended for aerospace applications.The PCF process,utilizing cryogenic deformation,significantly refines the coarse grains at the surface of the forgings,resulting in a finer and more uniform microstructure,thereby effectively addressing the issue of surface coarse grains associated with traditional methods.The findings indicate that the PCF process can accumulate higher stored energy,facilitating static recrystallization(SRX)during subsequent heat treatment and enhancing the microstructural uniformity.Utilizing various analytical techniques,including optical microscopy(OM),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM).This study reveals the superiority of the PCF process in terms of strain accumulation,dislocation density,and grain refinement.In conclusion,this method offers advantages in enhancing the performance and microstructural uniformity of 7050 aluminum forgings,presenting new opportunities for applications in the aluminum forging industry. 展开更多
关键词 7050 aluminum alloy cryogenic forging coarse grains dislocation density stored energy
在线阅读 下载PDF
Influence of cryogenic treatment on mechanical and ballistic properties of AA5754 alloy friction stir welded joints
3
作者 V.Manoj Mohan Prasath S.Dharani Kumar Saurabh S.Kumar 《Defence Technology(防务技术)》 2025年第4期184-198,共15页
In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-pierc... In the present study,the mechanical and ballistic properties of friction stir welded(FSW)aluminum alloy(AA5754)samples were investigated,both untreated and cryogenically treated,when impacted by a 7.62 mm armour-piercing(AP)bullet at an impact velocity of 682±20 m/s.The FSW technique was used to prepare the welded samples for AA5754,with an axial force of 7 kN,a feed rate of 20 mm/min,and a speed of 1200 rpm.The cryogenic treatments performed after welding,including deep cryogenic treatment(DCT)at196℃ and shallow cryogenic treatment(SCT)at80℃,for 6 and 72 h,respectively.The microstructure and mechanical characteristics of cryogenically treated and untreated joints were examined.The cryogenic treatment refined the grain size(1.05 μm)and enhanced the microhardness(93 Hv).Moreover,DCT-FSW significantly improved the tensile strength(13.93%)and impact strength(8.45%)compared to untreated FSW sample.Additionally,in untreated FSW samples,the fracture behaviour varied:the impact fracture mode primarily exhibited ductile failure,while the tensile fracture exhibited a mixed fracture mode.In contrast,the tensile and impact fracture modes of the DCT-FSWwere dominated by a ductile failure mode.The DCT-FSW target demonstrated a lower depth of penetration(DOP)of 31 mm compared to the SCT-FSWand untreated FSW targets.Post-ballistic SEM analysis in the crater region of all three zones revealed the formation of frictional grooves,small cracks,and adiabatic shear bands(ASBs). 展开更多
关键词 AA5754 alloy Ballistic and mechanical properties cryogenic treatment Depth of penetration
在线阅读 下载PDF
Effects of cryogenic treatment on mechanical properties of extruded Mg-Gd-Y-Zr(Mn) alloys 被引量:8
4
作者 熊创贤 张新明 +3 位作者 邓运来 肖阳 邓桢桢 陈部湘 《Journal of Central South University of Technology》 EI 2007年第3期305-309,共5页
The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), ... The influence of cryogenic treatment on the mechanical properties of the extruded Mg-Gd-Y-Zr(Mn) alloys was investigated by the tensile tests, scanning electron microscopy(SEM), transmission electron microscopy(TEM), and energy dispersive X-ray spectroscopy (EDS). The results show that the mechanical properties of both alloys are improved greatly during the in situ tensile test by soaking the samples in liquid nitrogen for 10 min. The ultimate tensile strength, yield tensile strength and elongation of cryogenic treated magnesium alloy added with zirconium or manganese are largely elevated. And remarkable microstructure change is observed in both alloys by cryogenic treatment. There are a large number of twins,rod-like, tree-like and chrysanthemum-like precipitated phases in the microstructures and the fracture surfaces exhibit the characteristics of ductile rupture when they are observed at room temperature. 展开更多
关键词 magnesium alloy cryogenic treatment mechanical property MICROSTRUCTURE
在线阅读 下载PDF
Influence of AZ31 sheet treated by cryogenic on punch shearing 被引量:6
5
作者 HU Zhi-qing GUO Chao-fan LI Hong-mei 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1582-1591,共10页
Punch shearing is used to form the part in the material process.Cryogenic treatment(CT)has active effect on local mechanical properties of steel,but it is still uncertain of the influence of CT on the properties of th... Punch shearing is used to form the part in the material process.Cryogenic treatment(CT)has active effect on local mechanical properties of steel,but it is still uncertain of the influence of CT on the properties of the magnesium alloy during punch shearing.In this work,the influence of AZ31 sheet treated by cryogenic on punch shearing was studied.Microstructures were observed with a ZEISS optical microscope,and mechanical properties,as well as shear properties were tested by tensile testing and punch shearing.The results show that the number of secondary phase increases and a large number of twins appear in the grains after CT.Meanwhile,the ultimate tensile strength(UTS),the ductility,and hardness of AZ31 are improved,while the yield strength(YS)decreases gradually during CT.During punch shearing,the shearing strength decreases,the rollover radius changes insignificantly,and the height of the burr on the edge of the cross section decreases.At the same time,a larger proportion of smooth zone on the cross section has been achieved. 展开更多
关键词 AZ31 magnesium alloy cryogenic treatment mechanical properties punch shearing
在线阅读 下载PDF
Effect of deep cryogenic treatment on the microstructural,mechanical and ballistic properties of AA7075-T6 aluminum alloy 被引量:4
6
作者 S.Dharani kumar U.Magarajan +1 位作者 Saurabh S Kumar Rodríguez-Millan M 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期101-110,共10页
The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strengt... The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strength of the Base Material(BM)and DCT-treated 7075 samples were analyzed through metallographic analysis and mechanical tests.The microstructure of the DCT-treated 7075 samples revealed fine grains and a distribution of secondary phase particles.The tensile strength,impact strength,and microhardness of DCT-treated samples increased by 7.41%,4%,and 9.68%,respectively,compared to the BM samples.The fractography analysis of the tensile samples showed cleavage facets,microvoids,and dimples in both the samples.The ballistic behavior of the BM and DCT target plates were studied by impacting hard steel core projectiles at a velocity of 750±10 m/s.The target plates failed due to petaling and ductile hole enlargement,and the depth of penetration(DOP)of the DCT target was less than that of the BM target,indicating a higher ballistic resistance.The post-ballistic microstructure examination of the target plates showed the formation of an Adiabatic Shear Band(ASB)without any cracks.It was concluded that the DCT treatment improved the mechanical and ballistic properties of the aluminum alloy due to grain refinement and high dislocation density. 展开更多
关键词 Deep cryogenic treatment AA7075-T6 Mechanical properties BALLISTIC Adiabatic shear band
在线阅读 下载PDF
Effects of cryogenic treatment on mechanical properties and microstructure of Fe-Cr-Mo-Ni-C-Co alloy 被引量:1
7
作者 朱远志 尹志民 +2 位作者 周勇 雷全锋 方文胜 《Journal of Central South University of Technology》 EI 2008年第4期454-458,共5页
Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardnes... Fe-Cr-Mo-Ni-C-Co alloy was quenched in liquid nitrogen and held for 24 h.Hardness tester,OM,XRD,SEM were used to investigate the mechanical properties and microstructures of the alloy.The results show that the hardness increases by 1-2(HRC)and the compressive strength decreases slightly after cryogenic treatment.The increase in hardness is attributed to the transformation from austenite to martensite and the precipitation of the very tiny carbideη-Fe2C.The decrease in compressive strength is caused by residual stress.The great amount of carbides,such as Cr7C3 and Fe2MoC,in the alloy and the obvious difference in thermal expansion coefficient between these carbides and the matrix at the cryogenic temperatures lead to this residual stress.The microscopy of cryogenic martensite is different from that of the non-cryogenic martensite.The cryogenic martensite is long and fine;while the non-cryogenic martensite is short and coarse.There is obvious surface relief of the cryogenic martensite transformation.It is not orientational of this kind surface relief and the boundary of this surface relief is smooth and in a shape of butterfly.The surface relief in the non-cryogenic martensite is wide and arranged in parallel,and the boundary of surface relief is not smooth.These characteristics may imply different growth ways of the two kinds of martensite. 展开更多
关键词 Fe-Cr-Mo-Ni-C-Co alloy powder metallurgy MICROSTRUCTURE mechanical properties cryogenic martensite
在线阅读 下载PDF
Phenomenological modelling of flow behaviour of 20MnMoNi55 reactor pressure vessel steel at cryogenic temperature with different strain rates
8
作者 Swagatam Paul Partha Dey +3 位作者 Snehasish Bhattacharjee Sanjib Kumar Acharyya Prasanta Sahoo Jayanta Chattopadhyay 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第3期326-337,共12页
In the present study a phenomenological constitutive model is developed to describe the flow behaviour of 20MnMoNi55 low carbon reactor pressure vessel (RPV) steel at sub-zero temperature under different strain rates.... In the present study a phenomenological constitutive model is developed to describe the flow behaviour of 20MnMoNi55 low carbon reactor pressure vessel (RPV) steel at sub-zero temperature under different strain rates. A set of uniaxial tensile tests is done with the variation of strain rates and temperature ranging from 10^-4s^-1 to 10^-1s^-1 and -80℃ to 140℃ respectively. From the experimental data, family of flow curves at different temperatures and strain rates are generated and fitted exponentially. The strain rate and temperature dependence of the coefficients of the exponential flow curves are extracted from these curves and characterised through a general phenomenological constitutive coupled equation. The coefficients of this coupled equation are optimised using genetic algorithm. Finite element simulation of tensile tests at different strain rates and temperatures are done using this coupled equation in material model of Abaqus FEA software and validated with experimental results. The novelties of proposed model are:(a) it can predict precisely the flow behaviour of tensile tests (b) it is a simple form of equation where fitting parameters are both function of strain rate ratio and temperature ratio,(c) it has ability to characterize flow behaviour with decreasing subzero temperatures and increasing strain rates. 展开更多
关键词 Flow BEHAVIOUR RPV steel cryogenic temperature STRAIN RATE
在线阅读 下载PDF
基于离子淌度质谱技术的离子光谱研究进展
9
作者 王娜 粟雯 +3 位作者 张谛 江游 方向 岳磊 《质谱学报》 EI CAS CSCD 北大核心 2022年第5期635-642,I0006,I0001,共10页
离子光谱结合了质谱的高灵敏度和光谱的分子结构特异性的优势,可对蛋白质、多肽、糖类、寡核苷酸等复杂体系进行结构表征和鉴定。但当存在同分异构体时,离子光谱难以从叠加的谱图中得到单个异构体的光谱信息。离子淌度质谱技术可通过区... 离子光谱结合了质谱的高灵敏度和光谱的分子结构特异性的优势,可对蛋白质、多肽、糖类、寡核苷酸等复杂体系进行结构表征和鉴定。但当存在同分异构体时,离子光谱难以从叠加的谱图中得到单个异构体的光谱信息。离子淌度质谱技术可通过区分待测离子质荷比和分子空间尺寸差异来实现异构体的分离。离子淌度可以对异构体分离后分别引入到后续的光谱和质谱分析中,减少了由异构体引起的光谱叠加问题,光谱可以进一步验证离子淌度的分离效果,因此质谱、光谱、离子淌度谱的有机结合在得到异构体精确光谱的同时,也为离子淌度质谱分析带来了新的维度和深度。本文概述了近20年来基于各类离子淌度质谱技术的光谱仪器发展和应用情况,总结目前存在的问题,并展望多维度结构质谱的新需求。 展开更多
关键词 离子淌度谱(ion mobility spectrometry IMS) 离子光谱(ion spectroscopy IS) 结构质谱(structural mass spectrometry SMS) 低温离子光谱(cold/cryogenic ion spectroscopy CIS)
在线阅读 下载PDF
High density dislocations enhance creep ageing response and mechanical properties in 2195 alloy sheet 被引量:2
10
作者 WEI Shuo MA Pei-pei +3 位作者 CHEN Long-hui YANG Jian-shi ZHAN Li-hua LIU Chun-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2194-2209,共16页
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit... The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion. 展开更多
关键词 creep ageing Al-Cu-Li alloy high dislocation density cryogenic rolling dislocation strengthening
在线阅读 下载PDF
Development of Debris-free Laser Plasma Sources for EUV Lithography in CIOMP 被引量:1
11
作者 CHEN Bo, NI Qi liang,CAO Jian lin (State Key Laboratory of Applied Optics,Changchun Institute of Optics, Fine Mechanics and Physics,Chinese Academy of Sciences, Changchun 130022, China) 《光学精密工程》 EI CAS CSCD 2001年第5期442-445,共4页
We have been developing debris-free laser plasma sources for EUV lithography since 1996. Two types of debris-free sources, such as cryogenic target and gas-puff target laser plasma sources, were designed and built up ... We have been developing debris-free laser plasma sources for EUV lithography since 1996. Two types of debris-free sources, such as cryogenic target and gas-puff target laser plasma sources, were designed and built up in CIOMP. EUV radiation spectra of the sources with a variety of targets have been obtained by different ways. 展开更多
关键词 EUV LITHOGRAPHY laser plasma DEBRIS - free cryogenic TARGET gas - PUFF TARGET
在线阅读 下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
12
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部