期刊文献+
共找到1,537篇文章
< 1 2 77 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
2
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 Bayesian network structure learning ordering search space graph search space prior constraint
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
3
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 Bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
A combined finite element and deep learning network for structural dynamic response estimation on concrete gravity dam subjected to blast loads 被引量:2
4
作者 Xin Fang Heng Li +3 位作者 She-rong Zhang Xiao-hua Wang Chao Wang Xiao-chun Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期298-313,共16页
Social infrastructures such as dams are likely to be exposed to high risk of terrorist and military attacks,leading to increasing attentions on their vulnerability and catastrophic consequences under such events.This ... Social infrastructures such as dams are likely to be exposed to high risk of terrorist and military attacks,leading to increasing attentions on their vulnerability and catastrophic consequences under such events.This paper tries to develop advanced deep learning approaches for structural dynamic response prediction and dam health diagnosis.At first,the improved long short-term memory(LSTM)networks are proposed for data-driven structural dynamic response analysis with the data generated by a single degree of freedom(SDOF)and the finite numerical simulation,due to the unavailability of abundant practical structural response data of concrete gravity dam under blast events.Three kinds of LSTM-based models are discussed with the various cases of noise-contaminated signals,and the results prove that LSTM-based models have the potential for quick structural response estimation under blast loads.Furthermore,the damage indicators(i.e.,peak vibration velocity and domain frequency)are extracted from the predicted velocity histories,and their relationship with the dam damage status from the numerical simulation is established.This study provides a deep-learning based structural health monitoring(SHM)framework for quick assessment of dam experienced underwater explosions through blastinduced monitoring data. 展开更多
关键词 Deep learning structural health monitoring Dynamic response Concrete gravity dam
在线阅读 下载PDF
Using junction trees for structural learning of Bayesian networks 被引量:1
5
作者 Mingmin Zhu Sanyang Liu +1 位作者 Youlong Yang Kui Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期286-292,共7页
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas... The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented. 展开更多
关键词 Bayesian network (BN) junction tree scoring function structural learning conditional independence.
在线阅读 下载PDF
基于XML技术的自测练习子系统在e-Learning中的应用与实现 被引量:2
6
作者 张兴中 余雪丽 +1 位作者 高保禄 吕俊峰 《计算机工程与应用》 CSCD 北大核心 2003年第11期170-172,178,共4页
该文在介绍e-Learning的概念及意义的基础上,引出了一种基于Web的实时交互式计算机网络课程e-Learn-ing系统。全文介绍了构成e-Learning系统的重要模块自测练习子系统的功能特点及实现方案,分析了XML的技术特征,并详细介绍了知识内容结... 该文在介绍e-Learning的概念及意义的基础上,引出了一种基于Web的实时交互式计算机网络课程e-Learn-ing系统。全文介绍了构成e-Learning系统的重要模块自测练习子系统的功能特点及实现方案,分析了XML的技术特征,并详细介绍了知识内容结构模型的构建,包括:知识模型的分层表示、知识点结构定义、XML-DTD文件定义以及测试内容结构的定义。最后介绍了系统的使用与安全问题。 展开更多
关键词 远程教育 E-learning 内容结构模型 CSM 扩展标记语言 XML
在线阅读 下载PDF
基于Q-learning的轻量化填充结构3D打印路径规划 被引量:2
7
作者 徐文鹏 王东晓 +3 位作者 付林朋 张鹏 侯守明 曾艳阳 《传感器与微系统》 CSCD 北大核心 2023年第12期44-47,共4页
针对轻量化填充结构模型,提出了一种基于Q-learning算法的3D打印路径规划方法,来改善该结构路径规划中转弯与启停次数较多的问题。首先对填充和分层处理后的模型切片进行预处理,然后以减少打印头转弯和启停动作为目标,构建相对应的马尔... 针对轻量化填充结构模型,提出了一种基于Q-learning算法的3D打印路径规划方法,来改善该结构路径规划中转弯与启停次数较多的问题。首先对填充和分层处理后的模型切片进行预处理,然后以减少打印头转弯和启停动作为目标,构建相对应的马尔可夫决策过程数学模型,多次迭代动作价值函数至其收敛,求解出一组取得最大回报值的动作策略,按照所设定的数学模型将该策略转义输出为打印路径,最后通过对比实验进行验证。实验结果表明:该方法能有效减少打印头的转弯和启停次数,增加打印路径的连续性,节省打印时间,同时可以在一定程度上提升打印质量。 展开更多
关键词 3D打印 路径规划 Q-learning算法 轻量化填充结构
在线阅读 下载PDF
授课子系统在e-Learning中的应用及实现
8
作者 张兴中 余雪丽 +1 位作者 王善利 高保禄 《太原理工大学学报》 CAS 2002年第6期627-630,共4页
在介绍现代远程教育的基础上 ,给出了一种基于 Web的实时交互式计算机网络课程e- Learning系统 ,详细阐述了授课子系统的功能特点及设计与制作方法 ,重点讨论了授课子系统在e- Learning中的应用 。
关键词 授课子系统 远程教育 计算机网络 E-learning 内容结构模型 文字稿本 制作脚本 电子化学习系统
在线阅读 下载PDF
Finding optimal Bayesian networks by a layered learning method 被引量:4
9
作者 YANG Yu GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期946-958,共13页
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos... It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms. 展开更多
关键词 BAYESIAN network (BN) structure learning layeredoptimal learning (LOL)
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
10
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 Bayesian networks Genetic algorithm structure learning Equivalent class
在线阅读 下载PDF
基于逐次超松弛技术的Double Speedy Q-Learning算法 被引量:2
11
作者 周琴 罗飞 +2 位作者 丁炜超 顾春华 郑帅 《计算机科学》 CSCD 北大核心 2022年第3期239-245,共7页
Q-Learning是目前一种主流的强化学习算法,但其在随机环境中收敛速度不佳,之前的研究针对Speedy Q-Learning存在的过估计问题进行改进,提出了Double Speedy Q-Learning算法。但Double Speedy Q-Learning算法并未考虑随机环境中存在的自... Q-Learning是目前一种主流的强化学习算法,但其在随机环境中收敛速度不佳,之前的研究针对Speedy Q-Learning存在的过估计问题进行改进,提出了Double Speedy Q-Learning算法。但Double Speedy Q-Learning算法并未考虑随机环境中存在的自循环结构,即代理执行动作时,存在进入当前状态的概率,这将不利于代理在随机环境中学习,从而影响算法的收敛速度。针对Double Speedy Q-Learning中存在的自循环结构,利用逐次超松弛技术对Double Speedy Q-Learning算法的Bellman算子进行改进,提出基于逐次超松弛技术的Double Speedy Q-Learning算法(Double Speedy Q-Learning based on Successive Over Relaxation,DSQL-SOR),进一步提升了Double Speedy Q-Learning算法的收敛速度。通过数值实验将DSQL-SOR与其他算法的实际奖励和期望奖励之间的误差进行对比,实验结果表明,所提算法比现有主流的算法SQL的误差低0.6,比逐次超松弛算法GSQL低0.5,这表明DSQL-SOR算法的性能较其他算法更优。实验同时对DSQL-SOR算法的可拓展性进行测试,当状态空间从10增加到1000时,每次迭代的平均时间增长缓慢,始终维持在10^(-4)数量级上,表明DSQL-SOR的可拓展性较强。 展开更多
关键词 强化学习 Q-learning 马尔可夫决策过程 逐次超松弛迭代法 自循环结构
在线阅读 下载PDF
Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization 被引量:3
12
作者 Chunfeng Wang Sanyang Liu Mingmin Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期784-790,共7页
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt... Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm. 展开更多
关键词 Bayesian network structure learning ant colony optimization unconstrained optimization
在线阅读 下载PDF
A Bayesian Network Learning Algorithm Based on Independence Test and Ant Colony Optimization 被引量:21
13
作者 JI Jun-Zhong ZHANG Hong-Xun HU Ren-Bing LIU Chun-Nian 《自动化学报》 EI CSCD 北大核心 2009年第3期281-288,共8页
关键词 最优化 随机系统 自动化 BN
在线阅读 下载PDF
基于STRUCTURED网的AR模型谱估计方法
14
作者 殷军 朱兆达 《系统工程与电子技术》 EI CSCD 1993年第4期9-14,共6页
本文着重分析了文献[1]中提出的用于求解线性方程组的STRUCTURED同的结构及其所使用的学习算法,改进了STRUCTURED网的收敛性能,并基于STRUCTURED网提出了一种自回归(AR)模型建模方法。这种建模方法的基本思想是用STRUCTURED网求解Yule-W... 本文着重分析了文献[1]中提出的用于求解线性方程组的STRUCTURED同的结构及其所使用的学习算法,改进了STRUCTURED网的收敛性能,并基于STRUCTURED网提出了一种自回归(AR)模型建模方法。这种建模方法的基本思想是用STRUCTURED网求解Yule-Walker型矩阵方程来得到AR模型系数。与现有的其它确定AR模型系数的方法相比,本文方法的优点在于:采用并行处理结构,能直接用VLSI硬件直接实现;不包含常用除法运算,能求解病态Yule-Walker型矩阵方程。 展开更多
关键词 structureD网 模型 并行处理 算法
在线阅读 下载PDF
一种从偏好数据库中学习CP-nets结构的并行算法 被引量:2
15
作者 刘素 刘惊雷 《郑州大学学报(理学版)》 CAS 北大核心 2020年第2期71-76,共6页
不同于传统的条件偏好网络(conditional preference networks,CP-nets)结构学习方法,本文提出一种基于MapReduce框架的相关系数并行算法。首先建立了偏好数据库上的相关系数评分函数,对候选父亲结构并行地进行“评分+搜索”,随后基于序... 不同于传统的条件偏好网络(conditional preference networks,CP-nets)结构学习方法,本文提出一种基于MapReduce框架的相关系数并行算法。首先建立了偏好数据库上的相关系数评分函数,对候选父亲结构并行地进行“评分+搜索”,随后基于序空间搜索得到各节点的局部最优,继而得到全局最优。同时指出,一个属性的父亲集是由属性之间冗余度小且偏好影响大的属性集所构成。实验结果表明,所提出的相关系数算法不仅能够快速有效地获取变量之间的因果关系,而且能求取出每个属性的可行父亲集,得到CP-nets的拓扑结构。 展开更多
关键词 条件偏好网络 相关系数 MAPREDUCE 偏好数据库 结构学习
在线阅读 下载PDF
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions 被引量:1
16
作者 Yang Kang Wang Linyuan +4 位作者 Gao Chao Chen Mozhi Tian Zhihui Zhou Dunzhi Liu Yang 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期91-100,共10页
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh... Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions. 展开更多
关键词 structural health monitoring guided waves principal component analysis deep learning DENOISING dynamic environmental condition
在线阅读 下载PDF
基于特征选择的CP-nets结构学习 被引量:1
17
作者 刘素 刘惊雷 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期14-28,共15页
作为描述多属性之间定性条件偏好的一种图模型,条件偏好网(Conditional Preference networks,CP-nets)的结构学习问题在CP-nets的研究中起着重要的作用.不同于传统的CP-nets学习方法,提出基于信息论和特征选择的方法来研究偏好数据库上... 作为描述多属性之间定性条件偏好的一种图模型,条件偏好网(Conditional Preference networks,CP-nets)的结构学习问题在CP-nets的研究中起着重要的作用.不同于传统的CP-nets学习方法,提出基于信息论和特征选择的方法来研究偏好数据库上的CP-nets的结构学习问题.首先建立了偏好数据库上的互信息和条件互信息的求解方法,并将互信息看作一个属性和它的可行父亲之间的相关性,条件互信息看作可行父亲集中属性之间的冗余性,从而构造出极大相关极小冗余(Maximal Relevance Minimal Redundancy,mRMR)的目标函数,同时指出,一个属性的父亲集是由属性之间冗余度小,但对孩子属性的偏好却影响极大的属性子集组成的.随后基于特征选择中的mRMR方法来实现CP-nets的结构学习,并设计相应的算法来完成从偏好数据中学习CP-nets的结构.最后在电影推荐数据集上验证了算法的有效性.研究结果表明,基于mRMR的特征选择方法可有效获取变量之间的因果关系,从而求取出每个属性的父亲集合,进而获得CP-nets的结构. 展开更多
关键词 cp-nets结构学习 极大相关极小冗余 可行父亲集 偏好数据库上的互信息 特征选择
在线阅读 下载PDF
促进学生结构化学习能力发展的初中数学教科书设计——以北师大版初中数学新教材为例 被引量:10
18
作者 章飞 顾继玲 +2 位作者 马复 张惠英 章巍 《天津师范大学学报(基础教育版)》 北大核心 2025年第1期7-12,共6页
教科书结构化设计,既是达成课标要求的需要,更是提升学生学习水平、发展学生学习能力的现实需要,教科书结构化设计的目标追求是促进学生结构化学习能力发展。数学学习中学生应较好地习得四种结构:主干知识的逻辑结构、具体对象的生长结... 教科书结构化设计,既是达成课标要求的需要,更是提升学生学习水平、发展学生学习能力的现实需要,教科书结构化设计的目标追求是促进学生结构化学习能力发展。数学学习中学生应较好地习得四种结构:主干知识的逻辑结构、具体对象的生长结构、同类知识的研究结构、单元学习的学习结构。研究认为,促进学生结构化学习的教科书应做到:教科书“有结构”,教科书设计保持相关知识学习结构的一致性;结构“看得见”,尽可能外显教科书结构化设计便于学生感知结构;结构“我参与”,设计任务引导学生感知结构、建构结构。北师大版初中数学新教材通过章前文字引领、章中活动感悟、章后结构梳理以及结构性习题的辅助等措施促进学生结构化学习。 展开更多
关键词 结构化学习 教科书 初中数学 初中数学新教材
在线阅读 下载PDF
基于卷积神经网络和多标签分类的复杂结构损伤诊断 被引量:1
19
作者 李书进 杨繁繁 张远进 《建筑科学与工程学报》 北大核心 2025年第1期101-111,共11页
为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了... 为研究复杂空间框架节点损伤识别问题,利用多标签分类的优势,构建了多标签单输出和多标签多输出两种卷积神经网络模型,用于框架结构节点损伤位置的判断和损伤程度诊断。针对复杂结构损伤位置判断时工况多、识别准确率不高等问题,提出了一种能对结构进行分层(或分区)处理并同时完成损伤诊断的多标签多输出卷积神经网络模型。分别构建了适用于多标签分类的浅层、深层和深层残差多输出卷积神经网络模型,并对其泛化性能进行了研究。结果表明:提出的模型具有较高的损伤诊断准确率和一定的抗噪能力,特别是经过分层(分区)处理后的多标签多输出网络模型更具高效性,有更快的收敛速度和更高的诊断准确率;利用多标签多输出残差卷积神经网络模型可以从训练工况中提取到足够多的损伤信息,在面对未经过学习的工况时也能较准确判断各节点的损伤等级。 展开更多
关键词 损伤诊断 卷积神经网络 多标签分类 框架结构 深度学习
在线阅读 下载PDF
计算力学中的机器学习应用
20
作者 聂小华 杨馨怡 +1 位作者 张国凡 常亮 《科学技术与工程》 北大核心 2025年第13期5273-5284,共12页
机器学习技术是当前的研究热点,以其强学习力、高通用性广泛应用于各类预测、识别、分类任务中。探讨了机器学习在计算结构力学中的应用,重点分析了其在材料性能预测、结构损伤分析、传统方法改进、本构方程建立和微分方程求解中的作用... 机器学习技术是当前的研究热点,以其强学习力、高通用性广泛应用于各类预测、识别、分类任务中。探讨了机器学习在计算结构力学中的应用,重点分析了其在材料性能预测、结构损伤分析、传统方法改进、本构方程建立和微分方程求解中的作用。通过文献综述总结了机器学习算法如神经网络、支持向量机和随机森林在提高计算效率和设计流程优化方面的优势。研究指出,机器学习与经典计算方法的结合为工程问题求解提供了新途径。未来研究将聚焦于算法优化、模型改进和跨学科技术融合。 展开更多
关键词 机器学习 计算结构力学 材料性能 结构损伤
在线阅读 下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部