We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-...We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-temperature operation down to-30℃.For this purpose,a Mg O-templated hierarchical carbon(MP98B)with an average mesopore diameter of 3.5 nm was prepared by pyrolysis of magnesium citrate hydrate at 900℃.To reach lower temperatures,the melting point and viscosity of the aqueous electrolyte were reduced by mixing water(W)with an organic solvent(methanol,M,or isopropanol,I)of high dielectric constant and low viscosity.5 mol kg^(-1)(5 m)Ch TFSI in an optimized volume fraction of cosolvent,M_(0.75)W_(0.25),and I_(0.75)W_(0.25),showed the highest conductivity;the higher conductivity in M_(0.75)W_(0.25)(22.8 and 3.1 m S cm^(-1) at 20 and-30℃,respectively)than in I_(0.75)W_(0.25)(8.5 and0.5 m S cm^(-1)at 20 and-30℃,respectively)is attributed to the lower viscosity of the M_(0.75)W_(0.25)solution.The electrochemical stability window(ESW)of 5 m Ch TFSI in M_(0.75)W_(0.25)and I_(0.75)W_(0.25)(1.6 V)on an MP98B electrode was determined by applying the S-method.Meanwhile,by adjusting the mass ratio of the two electrodes,a MP98B/MP98B capacitor using the 5 m electrolyte in M_(0.75)W_(0.25)could operate with a good life span up to 1.6 V while exhibiting a better charge propagation,greater specific capacitance,and higher specific energy than in I_(0.75)W_(0.25).展开更多
The morphology of active layer in bulk heterojunction(BHJ) organic solar cells is decisive to the device performance. Previous works have shown that the solvent engineering is an effective method to optimize the morph...The morphology of active layer in bulk heterojunction(BHJ) organic solar cells is decisive to the device performance. Previous works have shown that the solvent engineering is an effective method to optimize the morphology of active layer. However, screening the proper solvent is a tedious task, and we know very little about how to select a proper solvent for a particular system, especially for polymer/nonfullerene blend systems. Here, we combined the spectroscopic analysis in various solvent mixtures during film-forming process to reveal the relationship among the cosolvent characteristics, film-forming kinetics and film morphology. In this article, P3 HT/O-IDTBR blend was selected as model system due to being facile synthesized under a large-scale. Chlorobenzene(CB) was selected as main solvent, and the cosolvents were grouped into three categories according to its boiling point(bp) compared to CB.The cosolvents with lower bp, like chloroform(CF), can facilitate a faster film-forming process, reducing the domain size but sacrificing the crystallinity of both components. For the cosolvents with higher bp,like o-dichlorobenzene(DCB) and 1,2,4-trichlorobenzene(TCB), the self-organization process of P3 HT and O-IDTBR is separated and its duration was extended, constructing highly crystalline nanointerpenetrating network. However, the cosolvents with very high bp, such as chlornaphthalene(CN),would residue in film and keep P3 HT and O-IDTBR self-organizing for longer time, leading to larger phase separation. This work systematically investigated the effect of cosolvent on the film-forming kinetics, and proposed a guideline of how to select a proper cosolvent according to the crystallinity and domain size of active layer.展开更多
Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent d...Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent displacement of crude oil in shale nanopores and carbon storage was simulated and the influencing factors of displacement and storage were analyzed. It is shown that the attraction of the quartz wall to shale oil increases with the degree of hydroxylation. The higher the degree of quartz hydroxylation, the more difficult it is to extract the polar components of shale oil. Nanopore size also has a great impact on shale oil displacement efficiency. The larger the pore size, the higher the shale oil displacement efficiency. The closer the cosolvent molecules are to the polarity of the shale oil, the higher the mutual solubility of CO_(2) and shale oil. The more the non-polar components of shale oil, the lower the mutual solubility of CO_(2) and shale oil with highly polar cosolvent. Ethyl acetate is more effective in stripping relatively high polar shale oil, while dimethyl ether is more effective in stripping relatively low polar shale oil. Kerogen is highly adsorptive, especially to CO_(2). The CO_(2) inside the kerogen is not easy to diffuse and leak, thus allowing for a stable carbon storage. The highest CO_(2) storage rate is observed when dimethyl ether is used as a cosolvent, and the best storage stability is observed when ethyl acetate is used as a cosolvent.展开更多
基金financially supported by the National Science Centre(MAESTRO project UMO-2016/22/A/ST4/00092)。
文摘We report a carbon/carbon capacitor based on micro/mesoporous carbon electrodes with cost-effective and eco-friendly aqueous choline bis(trifluoromethylsulfonyl)imide(Ch TFSI)electrolyte with a cosolvent enabling low-temperature operation down to-30℃.For this purpose,a Mg O-templated hierarchical carbon(MP98B)with an average mesopore diameter of 3.5 nm was prepared by pyrolysis of magnesium citrate hydrate at 900℃.To reach lower temperatures,the melting point and viscosity of the aqueous electrolyte were reduced by mixing water(W)with an organic solvent(methanol,M,or isopropanol,I)of high dielectric constant and low viscosity.5 mol kg^(-1)(5 m)Ch TFSI in an optimized volume fraction of cosolvent,M_(0.75)W_(0.25),and I_(0.75)W_(0.25),showed the highest conductivity;the higher conductivity in M_(0.75)W_(0.25)(22.8 and 3.1 m S cm^(-1) at 20 and-30℃,respectively)than in I_(0.75)W_(0.25)(8.5 and0.5 m S cm^(-1)at 20 and-30℃,respectively)is attributed to the lower viscosity of the M_(0.75)W_(0.25)solution.The electrochemical stability window(ESW)of 5 m Ch TFSI in M_(0.75)W_(0.25)and I_(0.75)W_(0.25)(1.6 V)on an MP98B electrode was determined by applying the S-method.Meanwhile,by adjusting the mass ratio of the two electrodes,a MP98B/MP98B capacitor using the 5 m electrolyte in M_(0.75)W_(0.25)could operate with a good life span up to 1.6 V while exhibiting a better charge propagation,greater specific capacitance,and higher specific energy than in I_(0.75)W_(0.25).
基金supported by the National Natural Science Foundation of China (51773203, 51903211)the Fundamental Research Funds for the Central Universities (D5000200273)。
文摘The morphology of active layer in bulk heterojunction(BHJ) organic solar cells is decisive to the device performance. Previous works have shown that the solvent engineering is an effective method to optimize the morphology of active layer. However, screening the proper solvent is a tedious task, and we know very little about how to select a proper solvent for a particular system, especially for polymer/nonfullerene blend systems. Here, we combined the spectroscopic analysis in various solvent mixtures during film-forming process to reveal the relationship among the cosolvent characteristics, film-forming kinetics and film morphology. In this article, P3 HT/O-IDTBR blend was selected as model system due to being facile synthesized under a large-scale. Chlorobenzene(CB) was selected as main solvent, and the cosolvents were grouped into three categories according to its boiling point(bp) compared to CB.The cosolvents with lower bp, like chloroform(CF), can facilitate a faster film-forming process, reducing the domain size but sacrificing the crystallinity of both components. For the cosolvents with higher bp,like o-dichlorobenzene(DCB) and 1,2,4-trichlorobenzene(TCB), the self-organization process of P3 HT and O-IDTBR is separated and its duration was extended, constructing highly crystalline nanointerpenetrating network. However, the cosolvents with very high bp, such as chlornaphthalene(CN),would residue in film and keep P3 HT and O-IDTBR self-organizing for longer time, leading to larger phase separation. This work systematically investigated the effect of cosolvent on the film-forming kinetics, and proposed a guideline of how to select a proper cosolvent according to the crystallinity and domain size of active layer.
基金Supported by National Natural Science Foundation of China(52304021,52204031)Natural Science Foundation of Sichuan Province(2022NSFSC0205)National Science and Technology Major Project of China(2017ZX05049006-010).
文摘Molecular dynamics method was used to establish composite wall/inorganic nanopores of three pore sizes, three shale oil systems, five CO_(2)-cosolvent systems, and pure CO_(2) system. The process of CO_(2)-cosolvent displacement of crude oil in shale nanopores and carbon storage was simulated and the influencing factors of displacement and storage were analyzed. It is shown that the attraction of the quartz wall to shale oil increases with the degree of hydroxylation. The higher the degree of quartz hydroxylation, the more difficult it is to extract the polar components of shale oil. Nanopore size also has a great impact on shale oil displacement efficiency. The larger the pore size, the higher the shale oil displacement efficiency. The closer the cosolvent molecules are to the polarity of the shale oil, the higher the mutual solubility of CO_(2) and shale oil. The more the non-polar components of shale oil, the lower the mutual solubility of CO_(2) and shale oil with highly polar cosolvent. Ethyl acetate is more effective in stripping relatively high polar shale oil, while dimethyl ether is more effective in stripping relatively low polar shale oil. Kerogen is highly adsorptive, especially to CO_(2). The CO_(2) inside the kerogen is not easy to diffuse and leak, thus allowing for a stable carbon storage. The highest CO_(2) storage rate is observed when dimethyl ether is used as a cosolvent, and the best storage stability is observed when ethyl acetate is used as a cosolvent.