The initiation and evolution of short-pitch corrugation in Beijing metro line 4 was studied from the viewpoint of wheelset vibration.A three-dimensional elastic model was set up.Numerical simulations were undertaken w...The initiation and evolution of short-pitch corrugation in Beijing metro line 4 was studied from the viewpoint of wheelset vibration.A three-dimensional elastic model was set up.Numerical simulations were undertaken with this model to analyze the corrugation by the wheelset vertical vibration and torsional vibration.Based on numerical results,the relation between rail corrugation and wheelset vibration,and the relation between the position of electromotor and wheelset vibration were indicated.It is found that avoiding the wheelset-rail resonance is one method of controlling the rail short-pitch corrugation and solving the vibration and noise problem in metro lines.展开更多
The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dyn...The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dynamic response. A three-dimensional finite element model was developed to investigate the cause of rail corrugation. The constraints on rail vibration from two wheelsets and adjacent wheel-rail interactions were taken into account in the model. According to experimental and simulation results, the suppression measure for rail corrugation was proposed and the suppression mechanism was discussed. It was found that the cause of rail corrugation is related to vertical and lateral vibration of the rails outside the two wheelsets at around 380 Hz. The increased stiffness of the fasteners reduces the vibration energy of the rail and the wheel-rail force. However, simply increasing the stiffness of the fasteners may not be effective in the suppression of rail corrugation. If necessary, the rails need to be grinded to reduce the roughness to a certain level, so that increasing the fastener stiffness can effectively suppress the rail corrugation.展开更多
This paper studies low frequency decay in a rectangular room with the walls replaced by a variety of scattering surfaces. The study is carried out using a numerical approach. The finite-element method is used to model...This paper studies low frequency decay in a rectangular room with the walls replaced by a variety of scattering surfaces. The study is carried out using a numerical approach. The finite-element method is used to model the problem. The results show that certain types of scattering materials have more positive effects on the decay than others. Therefore it is possible to obtain desirable decay for a room by choosing suitable wall corrugations.展开更多
Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,...Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,extreme events such as strong explosion,concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m^(2) level,creating a unique threat to materials.This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods,under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m^(2) for 10 s.The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified.Two ignition modes were found at the critical radiant flux of 0.4 MW/m^(2),namely hot-gas spontaneous ignition and hot-residue piloted ignition.The latter is not the focus of this paper due to its extremely small probability of occurrence.The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition,lower ignition energy density,along with a corresponding rise in the critical mass flux and surface temperature at ignition moment.The simulation results are generally aligned with the experimental findings,despite some divergences may be attributed to model simplifications and parameter assumptions.The work contributes to a deeper insight into material behavior under extreme radiation,with valuable implications for fire safety and hazard assessment.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
Corrugated steel web is folded along the longitudinal direction and has the mechanical properties such as axial compression stiffness corrugation effect, shear modulus corrugation effect, similar to that of an accordi...Corrugated steel web is folded along the longitudinal direction and has the mechanical properties such as axial compression stiffness corrugation effect, shear modulus corrugation effect, similar to that of an accordion. In order to study the lateral-torsional buckling of box beams with corrugated steel webs (BBCSW) under the action of bending moment load, the neutral equilibrium equation of BBCSW under the action of bending moment load is derived through the stationary value theory of total potential energy and further, along with taking Kollbrunner-Hajdin correction method and the mechanical properties of the corrugated web into consideration. The analytical calculation formula of lateral-torsional buckling critical bending moment of BBCSW is then obtained. The lateral-torsional buckling critical bending moment of 96 BBCSW test specimens with different geometry dimensions are then calculated using both the analytical calculation method and ANSYS finite element method. The results show that the analytical calculation results agree well with the numerical calculation results using ANSYS, thus proving the accuracy of the analytical calculation method and model simplification hypothesis proposed in this paper. Also, compared with the box beams with flat steel webs (BBFSW) with the same geometry dimensions as BBCSW, within the common range of web space-depth ratio and web span-depth ratio, BBCSW’s lateral-torsional buckling critical bending moment is larger than that of BBFSW. Moreover, the advantages of BBCSW’s stability are even more significant with the increase of web space-depth ratio and web depth-thickness ratio.展开更多
A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's ...A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's near to far field transformation to obtain the fields in Fresnel region and then applies the second-derivative method to calculate the phase center. The adoption of FDTD efficiently overcomes the difficulties arising from the existing calculation methods' requirements for the radiation analytical formula of some complex antennas, which makes the existing second-derivative method more applicable in engineering. Also, FDTD increases the precision owing to the superposition field calculation from its extrapolation. The correctness of this proposed method is certified with typical examples and the phase center in the Fresnel region of a microwave radiometry calibration corrugate horn antenna is evaluated with the key features.展开更多
The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-...The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.展开更多
Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of th...Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.展开更多
Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual...Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time,the quantity of heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat exchanger is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.展开更多
The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide ...The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.展开更多
The effects of chemical compositions and microstructures on wearability properties of overlaid corrugating roll were studied, and the factors governing the hardness and the wearability of overlaid layer were explored....The effects of chemical compositions and microstructures on wearability properties of overlaid corrugating roll were studied, and the factors governing the hardness and the wearability of overlaid layer were explored. The results show that the hardness and wearability of the overlaid layer significantly rise with the increase of the mass fraction of various types of eutectic, but the crack-resistance falls. The chief factor governing the hardness of overlaid layer is the matrix microstructure, especially the amount of austenite; and the second is the amount of carbide. The principal factor governing the wearability of overlaid layer is the amount of special carbide, particularly the amount of eutectic; and the second is the hardness of overlaid layer. Meanwhile, high alloying electrodes may cause the gear-surface hardness of corrugating roll to be higher than 63HRc, and may enhance the wearability of the gear-surface of corrugating roll by a factor of 5.63 and 9.08.展开更多
基金Project(C11H00021) supported by Beijing Municipal Science & Technology Commission of ChinaProject(KCJB11063536) supported by Beijing Jiaotong University,China
文摘The initiation and evolution of short-pitch corrugation in Beijing metro line 4 was studied from the viewpoint of wheelset vibration.A three-dimensional elastic model was set up.Numerical simulations were undertaken with this model to analyze the corrugation by the wheelset vertical vibration and torsional vibration.Based on numerical results,the relation between rail corrugation and wheelset vibration,and the relation between the position of electromotor and wheelset vibration were indicated.It is found that avoiding the wheelset-rail resonance is one method of controlling the rail short-pitch corrugation and solving the vibration and noise problem in metro lines.
基金Project(52178405) supported by the National Natural Science Foundation of ChinaProject(Z191100002519010) supported by the Project of Beijing Municipal Science&Technology Plan,ChinaProjects(2018JBZ003, 2020JBZD013) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The cause and treatment of rail corrugation for the metro have always been a popular and challenging issue. In this work, the field measurements were carried out on rail corrugation, track stiffness, and the track dynamic response. A three-dimensional finite element model was developed to investigate the cause of rail corrugation. The constraints on rail vibration from two wheelsets and adjacent wheel-rail interactions were taken into account in the model. According to experimental and simulation results, the suppression measure for rail corrugation was proposed and the suppression mechanism was discussed. It was found that the cause of rail corrugation is related to vertical and lateral vibration of the rails outside the two wheelsets at around 380 Hz. The increased stiffness of the fasteners reduces the vibration energy of the rail and the wheel-rail force. However, simply increasing the stiffness of the fasteners may not be effective in the suppression of rail corrugation. If necessary, the rails need to be grinded to reduce the roughness to a certain level, so that increasing the fastener stiffness can effectively suppress the rail corrugation.
文摘This paper studies low frequency decay in a rectangular room with the walls replaced by a variety of scattering surfaces. The study is carried out using a numerical approach. The finite-element method is used to model the problem. The results show that certain types of scattering materials have more positive effects on the decay than others. Therefore it is possible to obtain desirable decay for a room by choosing suitable wall corrugations.
基金the Presidential Foundation of CAEP(Grant No.YZJJZQ2023008)the National Natural Science Foundation of China(Grant No.NSFC 12372342)for financial support of this work.
文摘Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,extreme events such as strong explosion,concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m^(2) level,creating a unique threat to materials.This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods,under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m^(2) for 10 s.The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified.Two ignition modes were found at the critical radiant flux of 0.4 MW/m^(2),namely hot-gas spontaneous ignition and hot-residue piloted ignition.The latter is not the focus of this paper due to its extremely small probability of occurrence.The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition,lower ignition energy density,along with a corresponding rise in the critical mass flux and surface temperature at ignition moment.The simulation results are generally aligned with the experimental findings,despite some divergences may be attributed to model simplifications and parameter assumptions.The work contributes to a deeper insight into material behavior under extreme radiation,with valuable implications for fire safety and hazard assessment.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
基金Projects(51408449,51778630)supported by the National Natural Science Foundation of ChinaProject(2018zzts189)supported by the Fundamental Research Funds for the Central Universities,China
文摘Corrugated steel web is folded along the longitudinal direction and has the mechanical properties such as axial compression stiffness corrugation effect, shear modulus corrugation effect, similar to that of an accordion. In order to study the lateral-torsional buckling of box beams with corrugated steel webs (BBCSW) under the action of bending moment load, the neutral equilibrium equation of BBCSW under the action of bending moment load is derived through the stationary value theory of total potential energy and further, along with taking Kollbrunner-Hajdin correction method and the mechanical properties of the corrugated web into consideration. The analytical calculation formula of lateral-torsional buckling critical bending moment of BBCSW is then obtained. The lateral-torsional buckling critical bending moment of 96 BBCSW test specimens with different geometry dimensions are then calculated using both the analytical calculation method and ANSYS finite element method. The results show that the analytical calculation results agree well with the numerical calculation results using ANSYS, thus proving the accuracy of the analytical calculation method and model simplification hypothesis proposed in this paper. Also, compared with the box beams with flat steel webs (BBFSW) with the same geometry dimensions as BBCSW, within the common range of web space-depth ratio and web span-depth ratio, BBCSW’s lateral-torsional buckling critical bending moment is larger than that of BBFSW. Moreover, the advantages of BBCSW’s stability are even more significant with the increase of web space-depth ratio and web depth-thickness ratio.
基金the National Key Laboratory of Metrology and Calibration Technology
文摘A finite domain time difference (FDTD) and second-derivative combined method is proposed for the evaluation of phase center in the Fresnel region of complex structure millimeter antennas. This method adopts FDTD's near to far field transformation to obtain the fields in Fresnel region and then applies the second-derivative method to calculate the phase center. The adoption of FDTD efficiently overcomes the difficulties arising from the existing calculation methods' requirements for the radiation analytical formula of some complex antennas, which makes the existing second-derivative method more applicable in engineering. Also, FDTD increases the precision owing to the superposition field calculation from its extrapolation. The correctness of this proposed method is certified with typical examples and the phase center in the Fresnel region of a microwave radiometry calibration corrugate horn antenna is evaluated with the key features.
基金Project(11972204) supported by the National Natural Science Foundation of China。
文摘The nonlinear vibration of graphene platelets reinforced composite corrugated(GPRCC)rectangular plates with shallow trapezoidal corrugations is investigated.Since graphene platelets are prone to agglomeration,a multi-layer distribution is adopted here to match the engineering requirements.Firstly,an equivalent composite plate model is obtained,and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle.Afterwards,the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution.Results show that the unit cell half period,unit cell inclination angle,unit cell height,graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.
基金Projects(51308363,11327801)supported by the National Natural Science Foundation of ChinaProject(2013-1792-9-4)supported by the Scientific Research Foundation for the Returned Overseas Chinese ScholarsProject(YJ201307)supported by the Start-up Research Fund for Introduced Talents of Sichuan University,China
文摘Fatigue is usually the cause for the cracks identified at bridge elements in service. With an increase in the introduction of corrugated steel web girders in recent highway bridge construction, the understanding of the fatigue behaviour of welded details in such structures becomes an important issue for the design. The typical welded details were represented as welded joints assembled by longitudinal corrugated plates. All the experiments were performed under fatigue loading using a servo-control testing machine. The test results from the failure mode observation with the aid of infrared thermo-graph technology show that the failure manner of these welded joints is comparable to that of the corrugated steel web beams reported previously. It is indicated from the stiffness degradation analysis that the welded joints with larger corrugation angle have higher stiffness and greater stiffness degradation in the notable stiffness degradation range. It is shown from the test S-N relations based on the free regression and forced regression analyses that there is a good linear dependence between lg(N) and lg(ΔS). It is also demonstrated that the proposed fracture mechanics analytical model is able to give a prediction slightly lower but on the safe side for the mean stresses at 2 million cycles of the test welded joints.
基金Supported by Jilin Significant Tranformation Project of Science and Techrological Achievements[(2009)17]
文摘Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and design on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimentally.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time,the quantity of heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat exchanger is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.
基金Sponsored by the 873 Plan by Ministry of Science and Technology of China ( 2006AA12Z1137)CSSAR Innovation Project ( 2007)
文摘The compact ortho-mode transducer (OMT) and compact conical corrugated horn(CCCH) are used as feeding system of the deployable dual polarizing antenna in this paper.A new stricture of double-septum in main wave guide OMT is proposed. The finite difference method in time domain (FDTD) in combination with genetic algorithms(GAs) is used to analysis and optimize this new OMT. The experiment results show that the voltage standing wave ratio (VSWR) of this OMT and feeding system is less than 1.17 in bandwidth; the isolation between the ortho-mode ports is less than -40dB; the cross-polar level of the feed can reach -35dB and the length of the main waveguide can be reduced 50% at least.
文摘The effects of chemical compositions and microstructures on wearability properties of overlaid corrugating roll were studied, and the factors governing the hardness and the wearability of overlaid layer were explored. The results show that the hardness and wearability of the overlaid layer significantly rise with the increase of the mass fraction of various types of eutectic, but the crack-resistance falls. The chief factor governing the hardness of overlaid layer is the matrix microstructure, especially the amount of austenite; and the second is the amount of carbide. The principal factor governing the wearability of overlaid layer is the amount of special carbide, particularly the amount of eutectic; and the second is the hardness of overlaid layer. Meanwhile, high alloying electrodes may cause the gear-surface hardness of corrugating roll to be higher than 63HRc, and may enhance the wearability of the gear-surface of corrugating roll by a factor of 5.63 and 9.08.