A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the ob...A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the objective of the proposed methodology doesn't aim to capture a unique solution,but to minimize the number of possible contamination sources.In the proposed methodology,all the possible pollution nodes are identified through the CSA methodology firstly.And then based on the principle of total probability formula,the probability of each possible contamination node is obtained through a series of calculation.According to magnitude of the probability,the number of possible pollution nodes is minimized.The effectiveness and feasibility of the methodology is demonstrated through an application to a real case of ZJ City.Four scenarios were designed to investigate the influence of different uncertainties on the results in this case.The results show that pollutant concentration,injection duration,the number of consumer complaints nodes used for calculation and the prior probability with which consumers would complaint have no particular effect on the identification of contamination source.Three nodes were selected as the most possible pollution sources in water pipe network of ZJ City which includes more than 3 000 nodes.The results show the potential of the proposed method to identify contamination source through consumer complaints.展开更多
Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the rad...Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.展开更多
Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across...Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk.展开更多
Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium ...Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.展开更多
Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or C...Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.展开更多
Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influenc...Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.展开更多
The status of PCDDs and PCDFs content in retail foods from a certain area by Isotope Dilution HRGC-HRMS was surveyed and the local population PCDD/Fs exposure from diverse foods and health risk was evaluated.PCDD/Fs w...The status of PCDDs and PCDFs content in retail foods from a certain area by Isotope Dilution HRGC-HRMS was surveyed and the local population PCDD/Fs exposure from diverse foods and health risk was evaluated.PCDD/Fs was extracted from samples by Soxhlet extraction,concentrated and purified by FMS column chromatograph,carbon column enrichment.Confirmation and quantitative analysis at pg/g level of PCDD/Fs was performed by HRGC/HRMS using multiple ion detection mode(MID).TEQ concentration was calculated by WHO-TEF multiplying by concentration of seventeen PCDD/Fs congener.Median of PCDD/Fs concentration for fish,livestock,poultry,egg,vegetable oil,milk,vegetable totally 100 samples for ten diverse foods didn’t exceed the limit standards by EU.The level of PCDD/Fs for different food in the certain area was lower or comparable to the data reported by developed country in the world.The total weekly intake and monthly intake for local population or national population was 3.44,14.8 WHO-TEQ/kg BW and 1.5,6.42 pg WHO-TEQ/kg BW respectively,the value was lower than the Tolerable Weekly Intake of 14 pg WHO TEQ/kg BW for PCDDs,PCDFs and dioxin-like PCBs established by EU Scientific Committee for Food.The dietary PCDD/Fs intake for local people was higher than national population.And animal food was the dominant contributor to the total dietary intake,which accounted for more than 70 percent.These levels of consumption of diverse food containing typical levels of PCDD/Fs doesn’t present a risk to the health of the local population.But integrative dietary intake could be evaluated including of PCBs intake for population in the future.展开更多
Flashover on polluted insulators is the most common accident occuring in power system.A great amount of work has been done to study the flashover characteristics on various kinds of insulators with several theoretical...Flashover on polluted insulators is the most common accident occuring in power system.A great amount of work has been done to study the flashover characteristics on various kinds of insulators with several theoretical models proposed.In these models,the amount and the distribution of the pollution on the insulator is critical to the flashover performance.However,very few simulation works has been carried out to study the pollution accumulation characteristics on the insulators.In this paper,both experimental and numerical efforts were given to study the pollution accumulation characteristics in order to evaluate the flashover probability.Experiments were performed first to have a bird view on the overall pollution distributions considering several crucial influential factors such as the wind speed and wind direction.AC porcelain insulators(XWP_2-160 type) were selected as the experimental samples and the equivalent salt deposit density(ESDD) was measured after the total predetermined amount of pollution was reached.Then, aerodynamic simulation was carried out to study the airflow and velocity distributions on each part of the insulator in clean air with regard to different wind speed and direction.It was found that the amount of the pollution on each section of the insulator has clear connections to the wind speed or air pressure distribution on the insulator surface.These distributions coincide to the pollution distribution obtained from experiments.Besides,the wind speed and air pressure distribution along the insulator chain was also studied.This work has shown that the numerical simulation may predict the pollution distribution on the insulators with practical accuracy.It is also possible to design new insulator shapes to reduce the pollution accumulation on critical areas according to the analysis in this work.展开更多
Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the ...Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.展开更多
Two acidic ferrisols, i.e., red soil (RS) and yellow red soil (YRS), from the vicinity regions of non-ferrous ores in Hunan province of China, were leached with simulated acid rain through artificial column experi...Two acidic ferrisols, i.e., red soil (RS) and yellow red soil (YRS), from the vicinity regions of non-ferrous ores in Hunan province of China, were leached with simulated acid rain through artificial column experiments. The results show that the total leaching mass of metals are m(Zn)〉m(Cu)〉m(Cd) from the original soils and m(Cd)〉m(Zn)〉〉 m(Cu) from the contaminated soils with external metals after leaching for 60 d continuously, leaching quantities of Cd and Zn from the contaminated red soil (CRS) are more than that from the contaminated yellow red soil (CYRS), but for Cu, it is almost the same. The preferential fractions for leaching are mainly in exchangeable forms, and content of exchangeable forms decreases significantly in the contaminated soil profiles. The unstable fractions of Cd, Cu and Zn in the RS and YRS increase significantly with the decrease of pH value of simulated acid rain. Changes of fi, actions of external Cd, Cu, and Zn in the residual CRS and CYRS profiles are significantly affected by the acidity of acid rain, too. After leaching for 60 d continuously, Cd exists mostly in exchangeable form, Cu exists mainly in exchangeable, manganese oxide-occluded and organically bounding forms, and Zn exists in residual in CRS and CYRS profiles. Most of exchangeable Cd and Zn exist only small in surface layer (0-20 cm) and are transferred to the sub-layers, contrarily, Cu accumulates mostly in the topsoil (0-20 cm) with low translocation.展开更多
Bibliometrics is an important branch in the field of information science,and it is widely used in many disciplines in modern research.A current active research subject can be analyzed and summarized from many aspects,...Bibliometrics is an important branch in the field of information science,and it is widely used in many disciplines in modern research.A current active research subject can be analyzed and summarized from many aspects,such as the core institutions,core authors,highly cited papers,and keywords by using bibliometrics.This paper describes a bibliometric analysis regarding soil arsenic content by using the database from Web of Science to compare relevant research from work done domestically and abroad from 2005 to 2016.The results show that the relevant publications in China and overseas both dramatically increased from 2009,which indicates that research activity is expanding.The USA produced 27.3%of all relevant articles followed by China with 26.9%and India with 9.5%.Key issues mainly focused on agriculture and environmental science.Major journals studied include the following:Science of the Total Environment,Environmental and Experimental Botany,Environmental Pollution,Chemosphere,Journal of Hazardous Materials,Journal of Environmental Chemical Engineering,Journal of Geochemical Exploration,Ecotoxicology and Environmental Safety,Environmental Research,Talanta,and Applied Geochemistry.These are the most important journals in this field.In light of cooperation between countries,it is clear that China and the United States occupy the leading position.展开更多
Flashover of ice-covered suspension insulator string is one of the major problems for the transmission lines in power grid.As leakage current is one of the important characteristics to predict the flashover of suspens...Flashover of ice-covered suspension insulator string is one of the major problems for the transmission lines in power grid.As leakage current is one of the important characteristics to predict the flashover of suspension insulator string,measuring method and analysis of the leakage current are developed for ice-covered XWP_2-160 porcelain suspension insulator string in this paper.The waveform of the leakage current is perfectly recorded from the occurrence of micro-discharge to flashover,in which the process can be divided into four periods according to the evolution of the leakage current.There are different rising rates of the leakage current and various phenomena of arc discharge in different periods with the increase of the applied voltage,and the distortion on the leakage current waveform is detected because of the effect of arc discharge.A characteristic current(I_w)and a critical current(I_(FT))of flashover,two important parameters of the leakage current before ice-covered insulator string flashover,are defined for analysis of the leakage current characteristics of pre-flashover along the polluted insulator string covered with ice.Statistical experimental results show that the average values of I_w and I_(FT) are within the major distribution zones,and both currents can be used for predicting the icing flashover.The values of two important leakage currents are approximately constant at different contamination degrees,while the direct relationships between the critical currents and the contamination degrees are not found in this paper.展开更多
Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation be...Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.展开更多
Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL d...Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL derivatives were synthesised by a chemical synthesis method, and two types of AHL derivatives were measured and screened by crystal violet staining assay, which have more obvious inhibitory effects on A. ferrooxidans biofilms under arsenic environment. Their structures were verified through IR and NMR identification. The morphological changes of A. ferrooxidans under the influence of the AHL derivatives were compared. In addition, the effects of AHL derivatives(0.1 μg/mL and 1 μg/mL) on membrane formation of A. ferrooxidans under high concentration of arsenic resistance(1,600 mg/L) were explored. Solid experimental data firstly showed that a portion of logarithmic microorganisms were ruptured under the effect of high arsenic concentration. Secondly, the volume of the cell shrank and the number of extracellular polymeric substances decreased after the addition of the AHL derivatives at high concentrations. Therefore, we found here that two derivatives used at concentrations of 0.1 μg/mL and 1 μg/m L accompanied with high concentration of arsenic can both effectively restrict biofilms formation by A. ferrooxidans.展开更多
Porcelain cap and pin insulators are by far the most popular suspension insulators in high voltage(HV) distribution networks all around the world.Inspection and condition monitoring of HV insulators is also very impor...Porcelain cap and pin insulators are by far the most popular suspension insulators in high voltage(HV) distribution networks all around the world.Inspection and condition monitoring of HV insulators is also very important to the utility companies because of the critical and vital role that they play in distribution systems.In terms of safety, practicality and ease of use,remote detection methods are more popular among the line technicians.A new remote condition assessment method based on electromagnetic radiations from porcelain insulators is presented in this paper. In a lab environment,a string of two porcelain insulators is energized by a 45 kV transformer.Electromagnetic radiations due to the partial discharge activities inside the porcelain insulator are captured by passive sensors and antennas. Two cases of defective insulators on a two insulator string are studied here.The first case focuses on the effect of contaminated porcelain shells on radiation signature of partial discharges.A polluted porcelain shell with ESDD level of 0.03 mg/cm^2 was first tested.The second case studies the effect of cracks of an intentionally-cracked porcelain shell. The cracked insulator is also tested on a two insulator string.To compare the partial discharge radiation signature of different faulty insulators,phase resolved graphs were developed.The electromagnetic radiated signature of a polluted insulator and a cracked insulator was calculated and compared using phase resolved graphs.展开更多
The chemistry of subsurface water bodies is difficult to understand unless precipitation chemistry and atmospheric processes are taken into consideration. Limited pioneer work has been carried out on considering preci...The chemistry of subsurface water bodies is difficult to understand unless precipitation chemistry and atmospheric processes are taken into consideration. Limited pioneer work has been carried out on considering precipitation chemistry.Polluted zone delineation is very much significant before the planning for any of the remedial measures.The dual contamination is a common problem noticed展开更多
BTEX contaminants in groundwater seriously impact the ecological environment and human health that has become one of the urgent problems needed to be solved.Due to its low density,low solubility and strong volatility,...BTEX contaminants in groundwater seriously impact the ecological environment and human health that has become one of the urgent problems needed to be solved.Due to its low density,low solubility and strong volatility,BTEX in groundwater usually form non-aqueous phase liquid(NAPL) contaminants and exist in three phases:gas,aqueous and oil phase.Air sparging(AS) is an in situ treatment technology展开更多
In order to investigate the bacteria and fungi aerosol characteristic distribution in HVAC-system and its components at Shaanxi History Museum.Measurements were performed to probe the bacteria and fungi aerosol in HVA...In order to investigate the bacteria and fungi aerosol characteristic distribution in HVAC-system and its components at Shaanxi History Museum.Measurements were performed to probe the bacteria and fungi aerosol in HVAC systems,located at Xi'an city,China.The results showed that there was fungi growth inside the ventilation ducts,fungi contamination was worse than bacteria,and both of them were distributed into occupied space with the air supply ducts.The dominating genera of fungi was found to be Penicillium spp.and Aspergillus spp.,which was respectively 46.1% and 20.7% in settling fungi,and the dominating genera of fungi in dust were Cladosporium spp.and Penicillium spp.,which was 41.8% and 30.1% respectively.It suggests that available measures to improve and control the performance of HVAC-systems such as the maintenance,management and cleaning should be taken to prevent this pollution and to develop strategies to keep this pollution away.展开更多
Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe w...Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.展开更多
C/N ratio of crops is an important input parameter of ecological model.Contamination stress will change the ecological parameters of crops,such as chlorophyll content and C/N ratio.Quite a few scholars chose the persp...C/N ratio of crops is an important input parameter of ecological model.Contamination stress will change the ecological parameters of crops,such as chlorophyll content and C/N ratio.Quite a few scholars chose the perspective of chlorophyll content inversion by remote sensing and build models of heavy metal contamination of remote sensing.But research on spectral stress response of C/N ratio is still blank.展开更多
基金Project(50908165) supported by the National Natural Science Foundation of China
文摘A new methodology was proposed for contamination source identification using information provided by consumer complaints from a probabilistic view.Due to the high uncertainties of information derived from users,the objective of the proposed methodology doesn't aim to capture a unique solution,but to minimize the number of possible contamination sources.In the proposed methodology,all the possible pollution nodes are identified through the CSA methodology firstly.And then based on the principle of total probability formula,the probability of each possible contamination node is obtained through a series of calculation.According to magnitude of the probability,the number of possible pollution nodes is minimized.The effectiveness and feasibility of the methodology is demonstrated through an application to a real case of ZJ City.Four scenarios were designed to investigate the influence of different uncertainties on the results in this case.The results show that pollutant concentration,injection duration,the number of consumer complaints nodes used for calculation and the prior probability with which consumers would complaint have no particular effect on the identification of contamination source.Three nodes were selected as the most possible pollution sources in water pipe network of ZJ City which includes more than 3 000 nodes.The results show the potential of the proposed method to identify contamination source through consumer complaints.
文摘Recognition and correction of ionospheric phase path contamination is a vital part of the global radar signal processing sequence. A number of model-based correction algorithms have been developed to deal with the radar performance degradation due to the ionospheric distortion and contamination. This paper addresses a novel parametric estimation and compensation method based on High-order Ambiguity Function (HAF) to solve the problem of phase path contamination of HF skywave radar signals. When signal-to-noise ratio and data sequence available satisfy the predefined conditions, the ionospheric phase path contamination may be modeled by a polynomial phase signal (PPS). As a new parametric tool for analyzing the PPS, HAF is introduced to estimate parameters of the polynomial-phase model and reconstruct the correction signal. Using the reconstructed correction signal, compensation can be performed before coherent integration so that the original echo spectrum can be restored. A piecewise scheme is proposed to track rapid variation of the phase contamination based on HAF method, and it can remove the Doppler spread effect caused by the ionosphere nonstationarity. Simulation and experimental results are given to demonstrate the efficiency of the proposed algorithm.
文摘Copper smelting is the main source of arsenic pollution in the environment,and China is the largest country for copper smelting.Taking 2022 as an example,this study analyzes the distribution and fate of arsenic across the copper mining,beneficiation,and smelting processes using a life-cycle approach,providing important insights for arsenic pollution prevention and the resource utilization of arsenic-bearing solid waste.The results show that the amount of As in waste rock,tailing and concentrate are 53483 t,86632 t,76162 t,respectively.After smelting treatment,the amount of arsenic in different types of solid waste,wastewater,waste gas and products are 76128 t,1 t,31 t and 2 t,respectively,and the proportion in arsenic sulfide slag is the highest(55%).The amount of emission to the environment is 32 t,accounting for only 0.04%of total amount.In the future,key considerations are to improve the resource utilization rate of arsenic-containing solid waste(tailing,smelting slag),especially arsenic sulfide slag,and to digest its environmental risk.
基金Project(22376221)supported by the National Natural Science Foundation of ChinaProject(2024JJ2074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST。
文摘Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U2340219)。
文摘Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.
基金Project(2020YFC1908802)supported by the National Key Research and Development Project of China。
文摘Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.
文摘The status of PCDDs and PCDFs content in retail foods from a certain area by Isotope Dilution HRGC-HRMS was surveyed and the local population PCDD/Fs exposure from diverse foods and health risk was evaluated.PCDD/Fs was extracted from samples by Soxhlet extraction,concentrated and purified by FMS column chromatograph,carbon column enrichment.Confirmation and quantitative analysis at pg/g level of PCDD/Fs was performed by HRGC/HRMS using multiple ion detection mode(MID).TEQ concentration was calculated by WHO-TEF multiplying by concentration of seventeen PCDD/Fs congener.Median of PCDD/Fs concentration for fish,livestock,poultry,egg,vegetable oil,milk,vegetable totally 100 samples for ten diverse foods didn’t exceed the limit standards by EU.The level of PCDD/Fs for different food in the certain area was lower or comparable to the data reported by developed country in the world.The total weekly intake and monthly intake for local population or national population was 3.44,14.8 WHO-TEQ/kg BW and 1.5,6.42 pg WHO-TEQ/kg BW respectively,the value was lower than the Tolerable Weekly Intake of 14 pg WHO TEQ/kg BW for PCDDs,PCDFs and dioxin-like PCBs established by EU Scientific Committee for Food.The dietary PCDD/Fs intake for local people was higher than national population.And animal food was the dominant contributor to the total dietary intake,which accounted for more than 70 percent.These levels of consumption of diverse food containing typical levels of PCDD/Fs doesn’t present a risk to the health of the local population.But integrative dietary intake could be evaluated including of PCBs intake for population in the future.
基金Supported by East China Grid Company Ltd(200933- 04316C156)
文摘Flashover on polluted insulators is the most common accident occuring in power system.A great amount of work has been done to study the flashover characteristics on various kinds of insulators with several theoretical models proposed.In these models,the amount and the distribution of the pollution on the insulator is critical to the flashover performance.However,very few simulation works has been carried out to study the pollution accumulation characteristics on the insulators.In this paper,both experimental and numerical efforts were given to study the pollution accumulation characteristics in order to evaluate the flashover probability.Experiments were performed first to have a bird view on the overall pollution distributions considering several crucial influential factors such as the wind speed and wind direction.AC porcelain insulators(XWP_2-160 type) were selected as the experimental samples and the equivalent salt deposit density(ESDD) was measured after the total predetermined amount of pollution was reached.Then, aerodynamic simulation was carried out to study the airflow and velocity distributions on each part of the insulator in clean air with regard to different wind speed and direction.It was found that the amount of the pollution on each section of the insulator has clear connections to the wind speed or air pressure distribution on the insulator surface.These distributions coincide to the pollution distribution obtained from experiments.Besides,the wind speed and air pressure distribution along the insulator chain was also studied.This work has shown that the numerical simulation may predict the pollution distribution on the insulators with practical accuracy.It is also possible to design new insulator shapes to reduce the pollution accumulation on critical areas according to the analysis in this work.
基金Project(21467005)supported by the National Natural Science Foundation of China
文摘Total concentrations of arsenic, lead, cadmium, mercury, nickel, chromium, and copper in the soils from near a coal mine area in southwest Guizhou, China, were measured to evaluate the level of contamination, and the potential ecological risks posed by the heavy metals were quantitatively estimated. Results reveal that all heavy metals/metalloid exceeded the background values for soil environmental quality of heavy metals in Guizhou area. Geo-accumulation index(I_(geo)) showed that arsenic had the highest contamination level(I_(geo)=4) among the seven heavy metals/metalloid, and the contamination levels of mercury and lead were also relatively high(I_(geo)=3). Pearson correlation and cluster analysis identified that mercury, copper and arsenic had a relationship, and their presence might be mainly related to mining activity, coal and oil combustion, and vehicle emissions. Improved Nemerow index indicated that the overall level of heavy metal contamination in the studied area ranged from moderately–heavily contaminated to heavily contaminated level. Potential ecological risk index(R_I) analysis manifested that the whole ecological risk level ranged from high degree to very high degree(325.30≤R_I≤801.02) in the studied soil samples, and the potential ecological risk factors (E_r^i) of heavy metals/metalloid were as follows: Hg > As > Cd > Pb > Cu > Ni > Cr, and the E_r^i of Hg and As reached very high risk grade.
基金Project(20507022) supported by National Natural Science Foundation of China project(PRA E 00-04) supported by the Joint Research Fund for Chinese and French Scientists
文摘Two acidic ferrisols, i.e., red soil (RS) and yellow red soil (YRS), from the vicinity regions of non-ferrous ores in Hunan province of China, were leached with simulated acid rain through artificial column experiments. The results show that the total leaching mass of metals are m(Zn)〉m(Cu)〉m(Cd) from the original soils and m(Cd)〉m(Zn)〉〉 m(Cu) from the contaminated soils with external metals after leaching for 60 d continuously, leaching quantities of Cd and Zn from the contaminated red soil (CRS) are more than that from the contaminated yellow red soil (CYRS), but for Cu, it is almost the same. The preferential fractions for leaching are mainly in exchangeable forms, and content of exchangeable forms decreases significantly in the contaminated soil profiles. The unstable fractions of Cd, Cu and Zn in the RS and YRS increase significantly with the decrease of pH value of simulated acid rain. Changes of fi, actions of external Cd, Cu, and Zn in the residual CRS and CYRS profiles are significantly affected by the acidity of acid rain, too. After leaching for 60 d continuously, Cd exists mostly in exchangeable form, Cu exists mainly in exchangeable, manganese oxide-occluded and organically bounding forms, and Zn exists in residual in CRS and CYRS profiles. Most of exchangeable Cd and Zn exist only small in surface layer (0-20 cm) and are transferred to the sub-layers, contrarily, Cu accumulates mostly in the topsoil (0-20 cm) with low translocation.
基金Project(41771512)supported by the National Natural Science Foundation of ChinaProject(2018RS3004)supported by Hunan Science&Technology Innovation Program,China
文摘Bibliometrics is an important branch in the field of information science,and it is widely used in many disciplines in modern research.A current active research subject can be analyzed and summarized from many aspects,such as the core institutions,core authors,highly cited papers,and keywords by using bibliometrics.This paper describes a bibliometric analysis regarding soil arsenic content by using the database from Web of Science to compare relevant research from work done domestically and abroad from 2005 to 2016.The results show that the relevant publications in China and overseas both dramatically increased from 2009,which indicates that research activity is expanding.The USA produced 27.3%of all relevant articles followed by China with 26.9%and India with 9.5%.Key issues mainly focused on agriculture and environmental science.Major journals studied include the following:Science of the Total Environment,Environmental and Experimental Botany,Environmental Pollution,Chemosphere,Journal of Hazardous Materials,Journal of Environmental Chemical Engineering,Journal of Geochemical Exploration,Ecotoxicology and Environmental Safety,Environmental Research,Talanta,and Applied Geochemistry.These are the most important journals in this field.In light of cooperation between countries,it is clear that China and the United States occupy the leading position.
文摘Flashover of ice-covered suspension insulator string is one of the major problems for the transmission lines in power grid.As leakage current is one of the important characteristics to predict the flashover of suspension insulator string,measuring method and analysis of the leakage current are developed for ice-covered XWP_2-160 porcelain suspension insulator string in this paper.The waveform of the leakage current is perfectly recorded from the occurrence of micro-discharge to flashover,in which the process can be divided into four periods according to the evolution of the leakage current.There are different rising rates of the leakage current and various phenomena of arc discharge in different periods with the increase of the applied voltage,and the distortion on the leakage current waveform is detected because of the effect of arc discharge.A characteristic current(I_w)and a critical current(I_(FT))of flashover,two important parameters of the leakage current before ice-covered insulator string flashover,are defined for analysis of the leakage current characteristics of pre-flashover along the polluted insulator string covered with ice.Statistical experimental results show that the average values of I_w and I_(FT) are within the major distribution zones,and both currents can be used for predicting the icing flashover.The values of two important leakage currents are approximately constant at different contamination degrees,while the direct relationships between the critical currents and the contamination degrees are not found in this paper.
基金Project(21707056)supported by the National Natural Science Foundation of ChinaProject(20151BAB213024)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ14302)supported by the Scientific Research Fund of Jiangxi Provincial Education Department,China
文摘Liquefaction of sewage sludge(SS)in ethanol-water cosolvents is a promising process for the preparation of bio-oil/biochar products.Effect of the combined use of ethanol and water on the distribution/transformation behaviors of heavy metals(HMs)contained in raw SS is a key issue on the safety and cleanness of above liquefaction process,which is explored in this study.The results show that pure ethanol facilitates the migration of HMs into biochar products.Pure water yields lower percentages of HMs in mobile/bioavailable speciation.Compared with sole solvent treatment,ethanol-water cosolvent causes a random/average effect on the distribution/transformation behaviors of HMs.After liquefaction of SS in pure water,the contamination degree of HMs is mitigated from high level(25.8(contamination factor))in raw SS to considerable grade(13.4)in biochar and the ecological risk is mitigated from moderate risk(164.5(risk index))to low risk(78.8).Liquefaction of SS in pure ethanol makes no difference to the pollution characteristics of HMs.The combined use of ethanol and water presents similar immobilization effects on HMs to pure water treatment.The contamination factor and risk index of HMs in biochars obtained in ethanol-water cosolvent treatment are 13.1-14.6(considerable grade)and 79.3-101.0(low risk),respectively.In order to further control the pollution of HMs,it is preferentially suggested to improve the liquefaction process of SS in ethanol-water mixed solvents by introducing conventional lignocellulosic/algal biomass,also known as co-liquefaction treatment.
基金Project(31660026)supported by the National Natural Science Foundation of ChinaProject(lzujbky-2016-152)supported by the National Basic Research Program of China
文摘Quorum sensing is one kind of cell-to-cell signalling system among microorganisms that works in response to their population density via autoinducers exemplified by AHL and oligopeptides. In this study, fourteen AHL derivatives were synthesised by a chemical synthesis method, and two types of AHL derivatives were measured and screened by crystal violet staining assay, which have more obvious inhibitory effects on A. ferrooxidans biofilms under arsenic environment. Their structures were verified through IR and NMR identification. The morphological changes of A. ferrooxidans under the influence of the AHL derivatives were compared. In addition, the effects of AHL derivatives(0.1 μg/mL and 1 μg/mL) on membrane formation of A. ferrooxidans under high concentration of arsenic resistance(1,600 mg/L) were explored. Solid experimental data firstly showed that a portion of logarithmic microorganisms were ruptured under the effect of high arsenic concentration. Secondly, the volume of the cell shrank and the number of extracellular polymeric substances decreased after the addition of the AHL derivatives at high concentrations. Therefore, we found here that two derivatives used at concentrations of 0.1 μg/mL and 1 μg/m L accompanied with high concentration of arsenic can both effectively restrict biofilms formation by A. ferrooxidans.
文摘Porcelain cap and pin insulators are by far the most popular suspension insulators in high voltage(HV) distribution networks all around the world.Inspection and condition monitoring of HV insulators is also very important to the utility companies because of the critical and vital role that they play in distribution systems.In terms of safety, practicality and ease of use,remote detection methods are more popular among the line technicians.A new remote condition assessment method based on electromagnetic radiations from porcelain insulators is presented in this paper. In a lab environment,a string of two porcelain insulators is energized by a 45 kV transformer.Electromagnetic radiations due to the partial discharge activities inside the porcelain insulator are captured by passive sensors and antennas. Two cases of defective insulators on a two insulator string are studied here.The first case focuses on the effect of contaminated porcelain shells on radiation signature of partial discharges.A polluted porcelain shell with ESDD level of 0.03 mg/cm^2 was first tested.The second case studies the effect of cracks of an intentionally-cracked porcelain shell. The cracked insulator is also tested on a two insulator string.To compare the partial discharge radiation signature of different faulty insulators,phase resolved graphs were developed.The electromagnetic radiated signature of a polluted insulator and a cracked insulator was calculated and compared using phase resolved graphs.
文摘The chemistry of subsurface water bodies is difficult to understand unless precipitation chemistry and atmospheric processes are taken into consideration. Limited pioneer work has been carried out on considering precipitation chemistry.Polluted zone delineation is very much significant before the planning for any of the remedial measures.The dual contamination is a common problem noticed
文摘BTEX contaminants in groundwater seriously impact the ecological environment and human health that has become one of the urgent problems needed to be solved.Due to its low density,low solubility and strong volatility,BTEX in groundwater usually form non-aqueous phase liquid(NAPL) contaminants and exist in three phases:gas,aqueous and oil phase.Air sparging(AS) is an in situ treatment technology
基金Supported by the National Natural Science Foundation of China(50878177)the Rearch Fund for the Doctoral Program of Higher Education
文摘In order to investigate the bacteria and fungi aerosol characteristic distribution in HVAC-system and its components at Shaanxi History Museum.Measurements were performed to probe the bacteria and fungi aerosol in HVAC systems,located at Xi'an city,China.The results showed that there was fungi growth inside the ventilation ducts,fungi contamination was worse than bacteria,and both of them were distributed into occupied space with the air supply ducts.The dominating genera of fungi was found to be Penicillium spp.and Aspergillus spp.,which was respectively 46.1% and 20.7% in settling fungi,and the dominating genera of fungi in dust were Cladosporium spp.and Penicillium spp.,which was 41.8% and 30.1% respectively.It suggests that available measures to improve and control the performance of HVAC-systems such as the maintenance,management and cleaning should be taken to prevent this pollution and to develop strategies to keep this pollution away.
基金Project(2006BAJ02A10) supported by the National Key Technologies R & D Program of China
文摘Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.
文摘C/N ratio of crops is an important input parameter of ecological model.Contamination stress will change the ecological parameters of crops,such as chlorophyll content and C/N ratio.Quite a few scholars chose the perspective of chlorophyll content inversion by remote sensing and build models of heavy metal contamination of remote sensing.But research on spectral stress response of C/N ratio is still blank.