The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this probl...The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.展开更多
Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–o...Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–organic frameworks(MOFs), also known as porous coordination polymers, are a fascinating class of highly ordered crystalline coordination polymers formed by the coordination of metal ions/clusters and organic bridging linkers/ligands. Owing to their unique structures and properties,i.e., high surface area, tailorable pore size, high density of active sites, and high catalytic activity, various MOF-based sensing platforms have been reported for environmental contaminant detection including anions, heavy metal ions,organic compounds, and gases. In this review, recent progress in MOF-based environmental sensors is introduced with a focus on optical, electrochemical, and field-effect transistor sensors. The sensors have shown unique and promising performance in water and gas contaminant sensing. Moreover, by incorporation with other functional materials, MOF-based composites can greatly improve the sensor performance. The current limitations and future directions of MOF-based sensors are also discussed.展开更多
Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is empl...Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field mod- ulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (er), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically.展开更多
Several damaged distributors of the shearer’s main pump have been analyzed. Lubricated abrasive wear was found to be the cause of distributor failure. On the basis of selecting reasonably materials and surface strent...Several damaged distributors of the shearer’s main pump have been analyzed. Lubricated abrasive wear was found to be the cause of distributor failure. On the basis of selecting reasonably materials and surface strenthening methods of distributors, pump’s function tests under the condition of contamination were performed with actual distributors. The results showed that wear resistance and contaminant wear lifetime of TiN coated high-speed steel W18Cr4V distributor is the best and TiN coating technology can be used in manufacturing of pump’s distributor.展开更多
Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracyclin...Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.展开更多
Water environmental capacity of Lijiang River within Guilin city is researched. The relationship among concentration of pollutants and flow rate as well as water environmental capacity of Lijiang River is discussed. T...Water environmental capacity of Lijiang River within Guilin city is researched. The relationship among concentration of pollutants and flow rate as well as water environmental capacity of Lijiang River is discussed. The changes of pollutant concentration in past years is analyzed. The results show that there exists a certain value of flow rate corresponding to a certain average concentration of pollutants on the upper and lower sections of the research area. If flow rate is greater than that value, the concentration of pollutants will decrease with the increase of flow. While the result will be the contrary when river flow is smaller than that value, that is to say, the concentration will increase with the increase of flow. To be aware of this regularity is of vital significance in water resource protection and comprehensive utilization[1].展开更多
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment...To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.展开更多
Emerging contaminants (ECs) are widely present in aquatic environments, posing potential risks to both ecosystems and human health. Theultrasound-assisted persulfate oxidation process has attracted considerable attent...Emerging contaminants (ECs) are widely present in aquatic environments, posing potential risks to both ecosystems and human health. Theultrasound-assisted persulfate oxidation process has attracted considerable attention in the degradation of ECs due to its ability to generate bothsulfate radicals and cavitation effects, enhancing degradation effects. In this paper, the principle of ultrasonic synergistic Fenton-like oxidationsystem for degrading organic pollutants was reviewed, divided into homogeneous system, non-homogeneous system, and single-atom system toexplore the synergistic effect of ultrasound-enhanced persulfate technology in three aspects, and the effects of environmental factors such asultrasonic frequency and power, system pH, temperature, and initial oxidant concentration on the system's decontamination performance werediscussed. Finally, future research on ultrasonically activated persulfate technology is summarized and prospected.展开更多
Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion ba...Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion batteries.There are two sources of Li_(2)CO_(3) contamination.The main one is the aging of garnet electrolytes in the atmosphere.Garnet electrolytes can react with H_(2)O and CO_(2) in the air to form Li_(2)CO_(3),which reduces ion conductivity,increases electrode/garnet electrolyte interface resistance,and deteriorates the electrochemical performance of the battery.Various strategies,such as elemental doping,grain boundary manipulation,and interface engineering,have been suggested to address these issues.The other is the passivation layer(Li_(2)CO_(3),Li_3N,LiOH,Li_(2)O) formed on the surface of the lithium foil after long-term storage,which is ignored by most researchers.To better understand the current strategies and future trends to address the Li_(2)CO_(3) problem,this perspective provides a systematic review of journals published in this field from 2020-2023.展开更多
To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular ti...To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular tin-based contamination consisting of micro-and macroparticles was deposited on silicon via physical vapor deposition(PVD).The electrodedriven hydrogen plasma at different power levels was systematically diagnosed using a Langmuir probe and a retarding field ion energy analyzer(RFEA).Moreover,the magnitude of the self-biasing voltage was measured at different power levels,and the peak ion energy was corrected for the difference between the RFEA measurements and the self-biasing voltage(E_(RFEA)-eV_(self)).XPS analysis of O 1s and Sn 3d peaks demonstrated the chemical reduction process after 1 W cleaning.Analysis of surface and cross-section morphology revealed that holes emerged on the upper part of the macroparticles while its bottom remained smooth.Hills and folds appeared on the upper part of the microparticles,confirming the top-down cleaning mode with hydrogen plasma.This study provides an in situ electrode-driven hydrogen plasma etching process for tin-based contamination and will provide meaningful guidance for understanding the chemical mechanism of reduction and etching.展开更多
Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increas...Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increasing coking problems, thereby raising concern to the refiner. This work investigated effect of nickel coexisting with vanadium in the FCC feedstock on the standard FCC catalyst during cracking process, in which destruction of active sites occurs as a result of the metals deposition. Laboratory simulated equilibrium catalysts (E-cats) were studied by XRD, FTIR spectroscopy, N-2 adsorption, solid state MAS-NMR, SEM and H-2-TPR. Results revealed that vanadium, above a certain concentration in the catalyst, under hydrothermal conditions, is highly detrimental to the catalyst's structure and activity. Conversely, nickel hardly affects the catalyst structure, but its co-presence in the catalyst reduces destructive effects of vanadium. The mechanism of nickel inhibition of vanadium poisoning of the catalyst is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The status of PCDDs and PCDFs content in retail foods from a certain area by Isotope Dilution HRGC-HRMS was surveyed and the local population PCDD/Fs exposure from diverse foods and health risk was evaluated.PCDD/Fs w...The status of PCDDs and PCDFs content in retail foods from a certain area by Isotope Dilution HRGC-HRMS was surveyed and the local population PCDD/Fs exposure from diverse foods and health risk was evaluated.PCDD/Fs was extracted from samples by Soxhlet extraction,concentrated and purified by FMS column chromatograph,carbon column enrichment.Confirmation and quantitative analysis at pg/g level of PCDD/Fs was performed by HRGC/HRMS using multiple ion detection mode(MID).TEQ concentration was calculated by WHO-TEF multiplying by concentration of seventeen PCDD/Fs congener.Median of PCDD/Fs concentration for fish,livestock,poultry,egg,vegetable oil,milk,vegetable totally 100 samples for ten diverse foods didn’t exceed the limit standards by EU.The level of PCDD/Fs for different food in the certain area was lower or comparable to the data reported by developed country in the world.The total weekly intake and monthly intake for local population or national population was 3.44,14.8 WHO-TEQ/kg BW and 1.5,6.42 pg WHO-TEQ/kg BW respectively,the value was lower than the Tolerable Weekly Intake of 14 pg WHO TEQ/kg BW for PCDDs,PCDFs and dioxin-like PCBs established by EU Scientific Committee for Food.The dietary PCDD/Fs intake for local people was higher than national population.And animal food was the dominant contributor to the total dietary intake,which accounted for more than 70 percent.These levels of consumption of diverse food containing typical levels of PCDD/Fs doesn’t present a risk to the health of the local population.But integrative dietary intake could be evaluated including of PCBs intake for population in the future.展开更多
Low-pressure air plasma cleaning is an effective method for removing organic contaminants on large-aperture optical components in situ in the inertial confinement fusion facility.Chemical reactions play a significant ...Low-pressure air plasma cleaning is an effective method for removing organic contaminants on large-aperture optical components in situ in the inertial confinement fusion facility.Chemical reactions play a significant role in plasma cleaning,which is a complex process involving abundant bond cleavage and species generation.In this work,experiments and reactive molecular dynamics simulations were carried out to unravel the reaction mechanism between the benchmark organic contaminants of dibutyl phthalate and air plasma.The optical emission spectroscopy was used to study the overall evolution behaviors of excited molecular species and radical signals from air plasma as a reference to simulations.Detailed reaction pathways were revealed and characterized,and specific intermediate radicals and products were analyzed during experiments and simulation.The reactive species in the air plasma,such as O,HO_(2)and O_(3)radicals,played a crucial role in cleaving organic molecular structures.Together,our findings provide an atomic-level understanding of complex reaction processes of low-pressure air plasma cleaning mechanisms and are essential for its application in industrial plasma cleaning.展开更多
In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (03) regeneration) of saturated granular activated carbon (GAC) with pentachlorophe- nol (PCP) were compared. The ...In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (03) regeneration) of saturated granular activated carbon (GAC) with pentachlorophe- nol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with 03 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after 03 regeneration. 03 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cy- cles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after 03 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that 03 regeneration has a lower weight loss than DBD plasma regeneration.展开更多
The cleanup of carbon tetrachloride(CCl4)in groundwater is challenging due to its high volatility and tendency to form a dense nonaqueous liquid phase.From the engineering applications perspective,the pump-and-treat(P...The cleanup of carbon tetrachloride(CCl4)in groundwater is challenging due to its high volatility and tendency to form a dense nonaqueous liquid phase.From the engineering applications perspective,the pump-and-treat(PAT)technology has substantial advantages owing to its large-scale implementation ability to solve groundwater contamination.However,few studies focused on the variation in chloride contaminants in remediation sites after the contaminated groundwater was pumped and treated.Herein,we monitored the changes in chlorinated contamination in groundwater from 12 aquifers at the field level for 6 months.Considering that the natural attenuation of chlorinated contamination is inseparable from the action of microorganisms,the major environmental factors influencing biodegradation were also evaluated.A redundancy analysis(RDA)showed that inorganic salts(DS,DN,and DF)were the most important factor(>60%)affecting the concentration of chloride contaminants,including the negative correlation between DN and the degradation of contaminants in shallow aquifers.In deep aquifers,DS,DF,and pH explained most of the degradation of chloride contaminants.For bedrock layers,DCl was positively relevant to the chloride contaminants in wells PTJ2 and PTJ10.In addition,EC and DS accounted for 73.2%and 92.4%of the contaminant’s variance in wells PTJ4 and PTJ8,respectively.Moreover,the concentrations of the corresponding contaminations and physicochemical variation in three different depths of aquifers were compared;the shallower aquifers showed a higher biodegradation.The in situ monitoring and analysis of contaminated groundwater in remediation sites under PAT will promote practical wastewater treatment technologies in engineering applications.展开更多
This research reported the effect of peeling naked oats with a peeling machine equipped with the flexible alloy blade.Results showed that the flexible alloy blade could achieve the same effect as traditional abrasive ...This research reported the effect of peeling naked oats with a peeling machine equipped with the flexible alloy blade.Results showed that the flexible alloy blade could achieve the same effect as traditional abrasive rolls. Furthermore, the new peeling method had hardly damage to the oat kernels. The result of scanning electron microscopy indicated the surface of peeled naked oats by the flexible alloy blade is homogeneous. The gap between the flexible alloy blade and the slotted screen could change the particle sizes of the flours obtained, which differed from traditional peeling machines. In addition, peeling for 15 seconds significantly reduced the microbial contaminants. The removal of outer layer decreased the lipase activity. The technological parameters were optimized by orthogonal L_9(3~4) test, the results showed a 30 s peeling time and 2% second-addition of water contributed to the peeling rate. The texture analysis demonstrate that the hardness of cooked groats decreases obviously after peeling treatments.展开更多
Four pairs of microsatellite molecular polymorphism primers were used to analyse microsatellite fingerprints of 188 seedlings derived from an open-pollinated progeny grafted Eucalyptus globulus breeding arboretum in V...Four pairs of microsatellite molecular polymorphism primers were used to analyse microsatellite fingerprints of 188 seedlings derived from an open-pollinated progeny grafted Eucalyptus globulus breeding arboretum in Victoria, south-eastern Australia. The microsatellite loci chosen for this study were highly polymorphic with the mean number of alleles per locus of 14.25. Individual mothers varied in their outcrosssing rate estimate from 15% to 95%, the overall outcrossing level in the arboretum was 47.9% and the contamination rate was 17.6%. The high selfing level was likely to result in marked inbreeding depression in the performance of open-pollinated seed lots. Open-pollinated seeds collected from such arboreta are not advisable because of its low genetic quality, although such arboreta may be useful for the seed production through large-scale manual pollination or collecting seeds only from trees or genotypes within the arboretum that have high outcrossing rates.展开更多
The S-RHT technology is developed by FRIPP for residue hydrotreating in the fixed bed in order to process the high sulfur crude and increase the yield of light distillates. The technology can be used for treating vari...The S-RHT technology is developed by FRIPP for residue hydrotreating in the fixed bed in order to process the high sulfur crude and increase the yield of light distillates. The technology can be used for treating various kinds of atmospheric residues (AR) or vacuum residues (VR) with a total metal content less than 150 ppm under the operating conditions of a temperature ranging from 360-410℃, a hydrogen partial pressure of 14-15 MPa, a LHSV of 0.20-0.30h-1 and a hydrogen to oil ratio of 700-1000. A certain amount of light products can be obtained and the hydrotreated atmospheric residue can fully meet the needs for the feedstock to RFCC or a blending feedstock to FCC. Based on the S-RHT technology, a 2 Mt/a residue hydrotreating unit has been constructed and successfully started up at Maoming Petrochemical Company by the end of 1999.展开更多
Though widely used in our daily lives,volatile methylsiloxanes and derivatives are emerging contaminants and becoming a high-priority environment and public health concern.Developing effective sorbent materials can re...Though widely used in our daily lives,volatile methylsiloxanes and derivatives are emerging contaminants and becoming a high-priority environment and public health concern.Developing effective sorbent materials can remove siloxanes in a cost-effective manner.Herein,by means of Grand Canonical Monte Carlo(GCMC)simulations,we evaluated the potentials of the recently proposed 68 stable zeolite-templated carbons(ZTCs)(PNAS 2018,115,E8116-E8124)for the removal of four linear methylsiloxanes and derivatives as well as two cyclic methylsiloxanes by the calculated average loading and average adsorption energy values.Four ZTCs,namely ISV,FAU1,FAU3,and H8326836,were identified with the top 50%adsorption performance toward all the six targeted contaminants,which outperform activated carbons.Further first principles computations revealed that steric hindrance,electrostatic interactions(further enhanced by charge transfer),and CH-p interactions account for the outstanding adsorption performance of these ZTCs.This work provides a quick procedure to computationally screen promising ZTCs for siloxane removal,and help guide future experimental and theoretical investigations.展开更多
基金supported by the National Natural Science Foundation of China(No.21906056No.22176060)+2 种基金the Undergraduate Training Program on Innovation and Entrepreneurship(S202110251087)the Science and Technology Commission of Shanghai Municipality(22ZR1418600)Shanghai Municipal Science and Technology(No.20DZ2250400).
文摘The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.
基金supported by the National Natural Science Foundation of China (No.21707102)1000 Talents Plan of China
文摘Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–organic frameworks(MOFs), also known as porous coordination polymers, are a fascinating class of highly ordered crystalline coordination polymers formed by the coordination of metal ions/clusters and organic bridging linkers/ligands. Owing to their unique structures and properties,i.e., high surface area, tailorable pore size, high density of active sites, and high catalytic activity, various MOF-based sensing platforms have been reported for environmental contaminant detection including anions, heavy metal ions,organic compounds, and gases. In this review, recent progress in MOF-based environmental sensors is introduced with a focus on optical, electrochemical, and field-effect transistor sensors. The sensors have shown unique and promising performance in water and gas contaminant sensing. Moreover, by incorporation with other functional materials, MOF-based composites can greatly improve the sensor performance. The current limitations and future directions of MOF-based sensors are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.61178018)the Ph.D.Funding Support Program of Education Ministry of China(Grant No.20110185110007)
文摘Modulation caused by surface/subsurface contaminants is one of the important factors for laser-induced damage of fused silica. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method is employed to simulate the electric field intensity distribution in the vicinity of particulate contaminants on fused silica surface. The simulated results reveal that the contaminant on both the input and output surfaces plays an important role in the electric field mod- ulation of the incident laser. The influences of the shape, size, embedded depth, dielectric constant (er), and the number of contaminant particles on the electric field distribution are discussed in detail. Meanwhile, the corresponding physical mechanism is analyzed theoretically.
文摘Several damaged distributors of the shearer’s main pump have been analyzed. Lubricated abrasive wear was found to be the cause of distributor failure. On the basis of selecting reasonably materials and surface strenthening methods of distributors, pump’s function tests under the condition of contamination were performed with actual distributors. The results showed that wear resistance and contaminant wear lifetime of TiN coated high-speed steel W18Cr4V distributor is the best and TiN coating technology can be used in manufacturing of pump’s distributor.
基金supported by the Key R&D Plan of Anhui Province(No.201904a07020013)Collaborative Innovation Program of Hefei Science Center,CAS(No.CX2140000018)the Funding for Joint Lab of Applied Plasma Technology(No.JL06120001H)。
文摘Antibiotic contamination adversely affects human health and ecological balance.In this study,gasliquid underwater discharge plasma was employed to simultaneously degrade three antibiotics,sulfadiazine(SDZ),tetracycline(TC),and norfloxacin(NOR),to address the growing problem of antibiotic contaminants in water.The effects of various parameters on the antibiotic degradation efficiency were evaluated,including the discharge gas type and flow rate,the initial concentration and pH of the solution,and the discharge voltage.Under the optimum parameter configuration,the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g(kW·h)-1after 5 min treatment;the removal efficiency was 96.5% and the corresponding energy yield was4.0 g(kW·h)-1 after 20 min treatment.Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR,but the role of reactive substances in TC degradation was relatively less significant.
文摘Water environmental capacity of Lijiang River within Guilin city is researched. The relationship among concentration of pollutants and flow rate as well as water environmental capacity of Lijiang River is discussed. The changes of pollutant concentration in past years is analyzed. The results show that there exists a certain value of flow rate corresponding to a certain average concentration of pollutants on the upper and lower sections of the research area. If flow rate is greater than that value, the concentration of pollutants will decrease with the increase of flow. While the result will be the contrary when river flow is smaller than that value, that is to say, the concentration will increase with the increase of flow. To be aware of this regularity is of vital significance in water resource protection and comprehensive utilization[1].
基金supported by the National Natural Science Foundation of China(52370041)National Natural Science Foundation of China(21976134 and 21707104)State Key Laboratory of Pollution treatment and Resource Reuse Foundation(NO.PCRRK21001).
文摘To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions.
基金supported by the National Natural Science Foundation of China(No.22376065)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ESK202104)+1 种基金the Science and Technology Commission of Shanghai Municipality(22ZR1418600)Shanghai Municipal Science and Technology(No.20DZ2250400)
文摘Emerging contaminants (ECs) are widely present in aquatic environments, posing potential risks to both ecosystems and human health. Theultrasound-assisted persulfate oxidation process has attracted considerable attention in the degradation of ECs due to its ability to generate bothsulfate radicals and cavitation effects, enhancing degradation effects. In this paper, the principle of ultrasonic synergistic Fenton-like oxidationsystem for degrading organic pollutants was reviewed, divided into homogeneous system, non-homogeneous system, and single-atom system toexplore the synergistic effect of ultrasound-enhanced persulfate technology in three aspects, and the effects of environmental factors such asultrasonic frequency and power, system pH, temperature, and initial oxidant concentration on the system's decontamination performance werediscussed. Finally, future research on ultrasonically activated persulfate technology is summarized and prospected.
基金funded by The Central Government Guides Local Science and Technology Development Special Fund Projects(Grant No.YDZJSX2022B003)the Shanxi Province Science and Technology Major Projects(Grant No.202101120401008)。
文摘Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion batteries.There are two sources of Li_(2)CO_(3) contamination.The main one is the aging of garnet electrolytes in the atmosphere.Garnet electrolytes can react with H_(2)O and CO_(2) in the air to form Li_(2)CO_(3),which reduces ion conductivity,increases electrode/garnet electrolyte interface resistance,and deteriorates the electrochemical performance of the battery.Various strategies,such as elemental doping,grain boundary manipulation,and interface engineering,have been suggested to address these issues.The other is the passivation layer(Li_(2)CO_(3),Li_3N,LiOH,Li_(2)O) formed on the surface of the lithium foil after long-term storage,which is ignored by most researchers.To better understand the current strategies and future trends to address the Li_(2)CO_(3) problem,this perspective provides a systematic review of journals published in this field from 2020-2023.
基金funded by the Institutional Research Fund from Sichuan University(No.2020SCUNL211)。
文摘To prolong the service life of optics,the feasibility of in situ cleaning of the multilayer mirror(MLM)of tin and its oxidized contamination was investigated using hydrogen plasma at different power levels.Granular tin-based contamination consisting of micro-and macroparticles was deposited on silicon via physical vapor deposition(PVD).The electrodedriven hydrogen plasma at different power levels was systematically diagnosed using a Langmuir probe and a retarding field ion energy analyzer(RFEA).Moreover,the magnitude of the self-biasing voltage was measured at different power levels,and the peak ion energy was corrected for the difference between the RFEA measurements and the self-biasing voltage(E_(RFEA)-eV_(self)).XPS analysis of O 1s and Sn 3d peaks demonstrated the chemical reduction process after 1 W cleaning.Analysis of surface and cross-section morphology revealed that holes emerged on the upper part of the macroparticles while its bottom remained smooth.Hills and folds appeared on the upper part of the microparticles,confirming the top-down cleaning mode with hydrogen plasma.This study provides an in situ electrode-driven hydrogen plasma etching process for tin-based contamination and will provide meaningful guidance for understanding the chemical mechanism of reduction and etching.
基金financially supported by the Joint Funds of the National Natural Science Foundation of ChinaChina National Petroleum Corporation(U1362202)+4 种基金National Natural Science Foundation of China(21206195)the Fundamental Research Funds for the Central Universities(14CX02050A,14CX02123A)Shandong Provincial Natural Science Foundation(ZR2012BM014)the project sponsored by Scientific Research Foundation for Returned Overseas Chinese Scholarthe support from Chinese Government under the Chinese scholarship scheme for international students
文摘Active sites of Fluid catalytic cracking (FCC) catalyst are poisoned during operation in the FCC reactor due to causes including feedstock contaminant metals deposition. This leads to activity, selectivity and increasing coking problems, thereby raising concern to the refiner. This work investigated effect of nickel coexisting with vanadium in the FCC feedstock on the standard FCC catalyst during cracking process, in which destruction of active sites occurs as a result of the metals deposition. Laboratory simulated equilibrium catalysts (E-cats) were studied by XRD, FTIR spectroscopy, N-2 adsorption, solid state MAS-NMR, SEM and H-2-TPR. Results revealed that vanadium, above a certain concentration in the catalyst, under hydrothermal conditions, is highly detrimental to the catalyst's structure and activity. Conversely, nickel hardly affects the catalyst structure, but its co-presence in the catalyst reduces destructive effects of vanadium. The mechanism of nickel inhibition of vanadium poisoning of the catalyst is discussed. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘The status of PCDDs and PCDFs content in retail foods from a certain area by Isotope Dilution HRGC-HRMS was surveyed and the local population PCDD/Fs exposure from diverse foods and health risk was evaluated.PCDD/Fs was extracted from samples by Soxhlet extraction,concentrated and purified by FMS column chromatograph,carbon column enrichment.Confirmation and quantitative analysis at pg/g level of PCDD/Fs was performed by HRGC/HRMS using multiple ion detection mode(MID).TEQ concentration was calculated by WHO-TEF multiplying by concentration of seventeen PCDD/Fs congener.Median of PCDD/Fs concentration for fish,livestock,poultry,egg,vegetable oil,milk,vegetable totally 100 samples for ten diverse foods didn’t exceed the limit standards by EU.The level of PCDD/Fs for different food in the certain area was lower or comparable to the data reported by developed country in the world.The total weekly intake and monthly intake for local population or national population was 3.44,14.8 WHO-TEQ/kg BW and 1.5,6.42 pg WHO-TEQ/kg BW respectively,the value was lower than the Tolerable Weekly Intake of 14 pg WHO TEQ/kg BW for PCDDs,PCDFs and dioxin-like PCBs established by EU Scientific Committee for Food.The dietary PCDD/Fs intake for local people was higher than national population.And animal food was the dominant contributor to the total dietary intake,which accounted for more than 70 percent.These levels of consumption of diverse food containing typical levels of PCDD/Fs doesn’t present a risk to the health of the local population.But integrative dietary intake could be evaluated including of PCBs intake for population in the future.
基金the Joint Funds of National Natural Science Foundation of China and China Academy of Engineering Physics(NSAF)(No.U2030109)National Natural Science Foundation of China(No.52075129)。
文摘Low-pressure air plasma cleaning is an effective method for removing organic contaminants on large-aperture optical components in situ in the inertial confinement fusion facility.Chemical reactions play a significant role in plasma cleaning,which is a complex process involving abundant bond cleavage and species generation.In this work,experiments and reactive molecular dynamics simulations were carried out to unravel the reaction mechanism between the benchmark organic contaminants of dibutyl phthalate and air plasma.The optical emission spectroscopy was used to study the overall evolution behaviors of excited molecular species and radical signals from air plasma as a reference to simulations.Detailed reaction pathways were revealed and characterized,and specific intermediate radicals and products were analyzed during experiments and simulation.The reactive species in the air plasma,such as O,HO_(2)and O_(3)radicals,played a crucial role in cleaving organic molecular structures.Together,our findings provide an atomic-level understanding of complex reaction processes of low-pressure air plasma cleaning mechanisms and are essential for its application in industrial plasma cleaning.
基金supported by National Natural Science Foundation of China(No.21107085)National High Technology Research and Development Program of China(No.2008AA06Z308)
文摘In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (03) regeneration) of saturated granular activated carbon (GAC) with pentachlorophe- nol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with 03 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after 03 regeneration. 03 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cy- cles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after 03 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that 03 regeneration has a lower weight loss than DBD plasma regeneration.
基金National Natural Science Foundation of China(grant numbers 52070123)Natural Science Foundation of Shandong Province(ZR2020ME224,ZR2021QE160,ZR2021QB016)Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team.
文摘The cleanup of carbon tetrachloride(CCl4)in groundwater is challenging due to its high volatility and tendency to form a dense nonaqueous liquid phase.From the engineering applications perspective,the pump-and-treat(PAT)technology has substantial advantages owing to its large-scale implementation ability to solve groundwater contamination.However,few studies focused on the variation in chloride contaminants in remediation sites after the contaminated groundwater was pumped and treated.Herein,we monitored the changes in chlorinated contamination in groundwater from 12 aquifers at the field level for 6 months.Considering that the natural attenuation of chlorinated contamination is inseparable from the action of microorganisms,the major environmental factors influencing biodegradation were also evaluated.A redundancy analysis(RDA)showed that inorganic salts(DS,DN,and DF)were the most important factor(>60%)affecting the concentration of chloride contaminants,including the negative correlation between DN and the degradation of contaminants in shallow aquifers.In deep aquifers,DS,DF,and pH explained most of the degradation of chloride contaminants.For bedrock layers,DCl was positively relevant to the chloride contaminants in wells PTJ2 and PTJ10.In addition,EC and DS accounted for 73.2%and 92.4%of the contaminant’s variance in wells PTJ4 and PTJ8,respectively.Moreover,the concentrations of the corresponding contaminations and physicochemical variation in three different depths of aquifers were compared;the shallower aquifers showed a higher biodegradation.The in situ monitoring and analysis of contaminated groundwater in remediation sites under PAT will promote practical wastewater treatment technologies in engineering applications.
基金Supported by National Natural Science Foundation of China(No.31571873)National College Students Innovation and Entrepreneurship Training Program Project(201710463002)
文摘This research reported the effect of peeling naked oats with a peeling machine equipped with the flexible alloy blade.Results showed that the flexible alloy blade could achieve the same effect as traditional abrasive rolls. Furthermore, the new peeling method had hardly damage to the oat kernels. The result of scanning electron microscopy indicated the surface of peeled naked oats by the flexible alloy blade is homogeneous. The gap between the flexible alloy blade and the slotted screen could change the particle sizes of the flours obtained, which differed from traditional peeling machines. In addition, peeling for 15 seconds significantly reduced the microbial contaminants. The removal of outer layer decreased the lipase activity. The technological parameters were optimized by orthogonal L_9(3~4) test, the results showed a 30 s peeling time and 2% second-addition of water contributed to the peeling rate. The texture analysis demonstrate that the hardness of cooked groats decreases obviously after peeling treatments.
基金This study was supported by State Administration of Foreign Experts Affairs, P. R. China (No.2001430007)
文摘Four pairs of microsatellite molecular polymorphism primers were used to analyse microsatellite fingerprints of 188 seedlings derived from an open-pollinated progeny grafted Eucalyptus globulus breeding arboretum in Victoria, south-eastern Australia. The microsatellite loci chosen for this study were highly polymorphic with the mean number of alleles per locus of 14.25. Individual mothers varied in their outcrosssing rate estimate from 15% to 95%, the overall outcrossing level in the arboretum was 47.9% and the contamination rate was 17.6%. The high selfing level was likely to result in marked inbreeding depression in the performance of open-pollinated seed lots. Open-pollinated seeds collected from such arboreta are not advisable because of its low genetic quality, although such arboreta may be useful for the seed production through large-scale manual pollination or collecting seeds only from trees or genotypes within the arboretum that have high outcrossing rates.
文摘The S-RHT technology is developed by FRIPP for residue hydrotreating in the fixed bed in order to process the high sulfur crude and increase the yield of light distillates. The technology can be used for treating various kinds of atmospheric residues (AR) or vacuum residues (VR) with a total metal content less than 150 ppm under the operating conditions of a temperature ranging from 360-410℃, a hydrogen partial pressure of 14-15 MPa, a LHSV of 0.20-0.30h-1 and a hydrogen to oil ratio of 700-1000. A certain amount of light products can be obtained and the hydrotreated atmospheric residue can fully meet the needs for the feedstock to RFCC or a blending feedstock to FCC. Based on the S-RHT technology, a 2 Mt/a residue hydrotreating unit has been constructed and successfully started up at Maoming Petrochemical Company by the end of 1999.
基金financially supported by NASA(Grant80NSSC17M0047)NSF(REU 1757365)+3 种基金partially supported by an Institutional Development Award(IDeA)INBRE Grant Number P20GM103475 from the National Institute of General Medical Sciences(NIGMS)a component of the National Institute of Health(NIH)the Bioinformatics Research Core of the INBREsupported by the office of science of the U.S.DOE under Contract No.DE-AC0500OR22750 and DE-AC02-05CH11231。
文摘Though widely used in our daily lives,volatile methylsiloxanes and derivatives are emerging contaminants and becoming a high-priority environment and public health concern.Developing effective sorbent materials can remove siloxanes in a cost-effective manner.Herein,by means of Grand Canonical Monte Carlo(GCMC)simulations,we evaluated the potentials of the recently proposed 68 stable zeolite-templated carbons(ZTCs)(PNAS 2018,115,E8116-E8124)for the removal of four linear methylsiloxanes and derivatives as well as two cyclic methylsiloxanes by the calculated average loading and average adsorption energy values.Four ZTCs,namely ISV,FAU1,FAU3,and H8326836,were identified with the top 50%adsorption performance toward all the six targeted contaminants,which outperform activated carbons.Further first principles computations revealed that steric hindrance,electrostatic interactions(further enhanced by charge transfer),and CH-p interactions account for the outstanding adsorption performance of these ZTCs.This work provides a quick procedure to computationally screen promising ZTCs for siloxane removal,and help guide future experimental and theoretical investigations.