Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh...Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.展开更多
The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced ...The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced by the EPWs, experimental and numerical investigations are carried out in this paper.Firstly, a series of sequential explosion tests are conducted to provide the basic data of the crater size.Then, a numerical model is established to simulate the damage effects of sequential explosions using the meshfree method of Smoothed particle Galerkin. The effectiveness of numerical model is verified by comparison with the experimental results. Finally, based on dimensional analysis, several empirical formulas for describing the crater size are presented, including the conical crater diameter and the conical crater depth of the single explosion, the conical crater area and the joint depth of the secondary explosion. The formula for the single explosion expresses the relationship between the aspect ratio of the charge ranging from 3 to 7, the dimensionless buried depth ranging from 2 to 14 and the crater size. The formula for the secondary explosion expresses the relationship between the relative position of the two explosions and the crater size. All of data can provide reference for the design of protective structures.展开更多
Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.Thi...Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.This study investigates the blasting effects and underlying mechanisms of concrete frustums subjected to contact explosions,employing both numerical simulations and field tests.It focuses on the effects of top and side blasting,with particular emphasis on fracture modes,damage patterns,and fragment sizes,as well as the causes of different failure modes and the propagation of stress waves.The study also explores the blasting effects of detonating explosives at varying positions along the side and with different charge amounts.The results show that side-blasting leads to complete fragmentation,with tensile waves playing a significant role in creating extensive damage zones that propagate parallel to the frustum's outer surface,concentrating damage near the surface.During top-blasting,the upper half of the frustum undergoes fragmentation,while the lower half experiences cracking.Tensile waves propagate from the top to the bottom surface,forming larger blocks in regions with lower wave intensity.Three distinct damage zones within the frustum were identified,and a series of mathematical formulas were derived to describe the relationship between the maximum fragment size and charge mass.As the charge mass increased from 1.0 kg to 4.0 kg,the maximum fragment size decreased.Detonation at the center of the frustum's side resulted in the most severe fragmentation,with a 51.8%reduction in fragment size compared to other detonation positions.Finally,four broken modes were classified,each influenced by charge mass and explosive location.This study provides valuable insights for optimizing civil blasting operations and designing protective engineering structures.展开更多
Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the ...Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the lack of sufficient research regarding the resistance of functionally graded fiber-reinforced concrete against projectile impacts has resulted in a limited understanding of the performance of this concrete type,which is necessary for the design and construction of structures requiring great resistance against external threats.Here,the performance of functionally graded fiber-reinforced concrete against projectile impacts was investigated experimentally using a(two-stage light)gas gun and a drop weight testing machine.For this objective,12 mix designs,with which 35 cylindrical specimens and 30 slab specimens were made,were prepared,and the main variables were the magnetite aggregate vol%(55%)replacing natural coarse aggregate,steel fiber vol%,and steel fiber type(3D and 5D).The fibers were added at six vol%of 0%,0.5%,0.75%,1%,1.25%,and 1.5%in 10 specimen series(three identical specimens per each series)with dimensions of 40×40×7.5 cm and functional grading(three layers),and the manufactured specimens were subjected to the drop weight impact and projectile penetration tests by the drop weight testing machine and gas gun,respectively,to assess their performance.Parameters under study included the compressive strength,destruction level,and penetration depth.The experimental results demonstrate that using the magnetite aggregate instead of the natural coarse aggregate elevated the compressive strength of the concrete by 61%.In the tests by the drop weight machine,it was observed that by increasing the total vol%of the fibers,especially by increasing the fiber content in the outer layers(impact surface),the cracking resistance and energy absorption increased by around 100%.Note that the fiber geometry had little effect on the energy absorption in the drop weight test.Investigating the optimum specimens showed that using 3D steel fibers at a total fiber content of 1 vol%,consisting of a layered grading of 1.5 vol%,0 vol%,and 1.5 vol%,improved the penetration depth by 76%and lowered the destruction level by 85%.In addition,incorporating the 5D steel fibers at a total fiber content of 1 vol%,consisting of the layered fiber contents of 1.5%,0%,and 1.5%,improved the projectile penetration depth by 50%and lowered the damage level by 61%compared with the case of using the 3D fibers.展开更多
The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comp...The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comparing the experimental data,with computational efficiency enhanced through improved mesh refinement.Penetration simulations involving deformable projectiles at various incident angles analyzed the effects of aggregate volume fraction and particle size on ballistic trajectory and terminal deflection.Sensitivity analysis reveals a strong power-law relationship between aggregate content and the projectile's deflection angle.The increase in aggregate content will enhance the confinement effect,shorten the intrusion distance of the projectile,and lead to a decrease in the deflection angle of the projectile.The effect of aggregate particle size on the projectile deflection angle follows a Gaussian distribution.The maximum deflection angle occurs when the aggregate particle size is between 2.7 and 3.1 times the projectile diameter.An increase in particle size reduces the number of aggregate-mortar interfaces at the same aggregate volume fraction,leading to an enlargement of the damage zone in concrete,a decrease in the number of cracks,and an increase in crack length.These findings enhance the understanding of concrete penetration mechanisms and offers valuable insights for engineering structure protection.展开更多
With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure m...With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.展开更多
Concrete material model plays an important role in numerical predictions of its dynamic responses subjected to projectile impact and charge explosion.Current concrete material models could be distinguished into two ki...Concrete material model plays an important role in numerical predictions of its dynamic responses subjected to projectile impact and charge explosion.Current concrete material models could be distinguished into two kinds,i.e.,the hydro-elastoplastic-damage model with independent equation of state and the cap-elastoplastic-damage model with continuous cap surface.The essential differences between the two kind models are vital for researchers to choose an appropriate kind of concrete material model for their concerned problems,while existing studies have contradictory conclusions.To resolve this issue,the constitutive theories of the two kinds of models are firstly overviewed.Then,the constitutive theories between the two kinds of models are comprehensively compared and the main similarities and differences are clarified,which are demonstrated by single element numerical examples.Finally,numerical predictions for projectile penetration and charge explosion experiments on concrete targets are compared to further demonstrate the conclusion made by constitutive comparison.It is found that both the two kind models could be used to simulate the dynamic responses of concrete under projectile impact and blast loadings,if the parameter needed in material models are well calibrated,although some discrepancies between them may exist.展开更多
Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.Th...Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.This study designed and prepared EPS concrete materials with four levels of density.Quasi-static uniaxial compression and Split Hopkinson Pressure Bar(SHPB)impact tests were conducted to obtain stress-strain curves,elastic moduli,failure modes,energy absorptions,and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions.The influences of density on various performance indicators were analyzed.By combining the Zhu-Wang-Tang(ZWT)constitutive model with a modified elastic-brittle model,a modified dynamic constitutive model was proposed.The accuracy of the model was validated by the experimental data.The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete.The EPS concrete has significant strain rate effect,which gets stronger as density increases.The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete.展开更多
With the application of hypervelocity weapons in warfare,comprehensively evaluating their destructive effects is of particular interest for protective engineering.Existing studies mostly focused on the depth of penetr...With the application of hypervelocity weapons in warfare,comprehensively evaluating their destructive effects is of particular interest for protective engineering.Existing studies mostly focused on the depth of penetration by hypervelocity projectile,while investigation on stress waves associated with hypervelocity penetration was very limited.To clarify the generation and propagation of stress waves in concrete targets induced by hypervelocity projectile penetration,in the present study,six spherical projectile penetration tests on concrete targets were firstly conducted with projectile velocity ranged from 1875 m/s to 3940 m/s,in which the stress waves were carefully measured by the PVDF transducers.Then corresponding numerical models were developed and validated,and based on the validated numerical model the mechanisms of generation and propagation of stress waves were clarified.It was found that the stress waves observed during hypervelocity penetration are generated by the continuous interactions of projectile and target during penetration,and have unique characteristics such as the directionality and the"two peaks"phenomenon when compared with the stress waves generated by charge explosion.Finally,the effects of projectile velocity,projectile material,and target strength on the stress waves below the penetration depth we re numerically investigated,and two important indexes for evaluating the stress waves by hypervelocity penetration were proposed.展开更多
Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composit...Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composite) were studied by the air-void analyzer (AVA) method and the microscopical method. The correlations between the test results obtained from different methods were analyzed. The results show that, there is a close correlation of air content and spacing factor between the fresh concrete and the hardened concrete, but the specific surface correlation is weak. The air content of concrete measured by the AVA method is smaller than that of the pressure method and the microscopical method, because AVA device captures only the air voids with the size smaller than 3 mm. Spacing factor of the fresh concrete measured by the AVA method is greater than that of the hardened concrete measured by the microscopical method, while the specific surface is smaller. When the criterion of 4%-7% air content measured by the pressure method and microscopical method is acceptable for concrete freezing-thawing (F-T) durability in cold weather, the air content measured by the AVA method should be 2.4%-4.6%. For the concrete F-T durability, when the criterion of the spacing factor measured by the microscopical method is 300 μm, the spacing factor measured by the AVA method should be 360 μm.展开更多
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ...An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.展开更多
Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial co...Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.展开更多
In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effec...In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effects of key parameters such as size of specimens, tie configuration, transverse reinforcement ratio, and concrete cover were studied. The results show that for specimens with the same configuration and the same volumetric ratio of the transverse reinforcement, along with the increasing specimen size, the peak stress, peak strain and deformation of the post-peak show a down trend, however, the volumetric ratio of the transverse reinforcement is lowered, the decreasing of the peak stress is accelerated, but the decreasing of the deformation is slow down. For specimens with the same volumetric ratio but different configurations of transverse reinforcement, though the transverse reinforcement configuration becomes more complicated, the peak stress of the large size specimen does not improve more than that of the small size. However, the deformation occurs before the stress declines to 85% of peak stress, and the improvement with the grid pattern tie configuration is much greater due to size effect.展开更多
This work presents a numerical simulation of ballistic penetration and high velocity impact behavior of plain and reinforced concrete panels.This paper is divided into two parts.The first part consists of numerical mo...This work presents a numerical simulation of ballistic penetration and high velocity impact behavior of plain and reinforced concrete panels.This paper is divided into two parts.The first part consists of numerical modeling of reinforced concrete panel penetrated with a spherical projectile using concrete damage plasticity(CDP)model,while the second part focuses on the comparison of CDP model and Johnson-Holmquist-2(JH-2)damage model and their ability to describe the behavior of concrete panel under impact loads.The first and second concrete panels have dimensions of 1500 mm1500 mm150 mm and 675 mm675 mm200 mm,respectively,and are meshed using 8-node hexahedron solid elements.The impact object used in the first part is a spherical projectile of 150 mm diameter,while in the second part steel projectile of a length of 152 mm is modeled as rigid element.Failure and scabbing characteristics are studied in the first part.In the second part,the comparison results are presented as damage contours,kinetic energy of projectile and internal energy of the concrete.The results revealed a severe fracture of the panel and high kinetic energy of the projectile using CDP model comparing to the JH-2 model.In addition,the internal energy of concrete using CDP model was found to be less comparing to the JH-2 model.展开更多
Factors that have effect on concrete creep include mixture composition,curing conditions,ambient exposure conditions,and element geometry.Considering concrete mixtures influence and in order to improve the prediction ...Factors that have effect on concrete creep include mixture composition,curing conditions,ambient exposure conditions,and element geometry.Considering concrete mixtures influence and in order to improve the prediction of prestress loss in important structures,an experimental test under laboratory conditions was carried out to investigate compression creep of two high performance concrete mixtures used for prestressed members in one bridge.Based on the experimental results,a power exponent function of creep degree for structural numerical analysis was used to model the creep degree of two HPCs,and two series of parameters of this function for two HPCs were calculated with evolution program optimum method.The experimental data was compared with CEB-FIP 90 and ACI 209(92) models,and the two code models both overestimated creep degrees of the two HPCs.So it is recommended that the power exponent function should be used in this bridge structure analysis.展开更多
When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to n...When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to nearby personnel and equipment. To study the lead fragment velocity of ultra-high-performance concrete(UHPC), partially embedded explosion experiments were performed on UHPC slabs of limited thickness using a cylindrical trinitrotoluene charge. The launch angles and velocities of the resulting fragments were the determined using images collected by high-speed camera to document the concrete spalling and fragment launching process. The results showed that UHPC slabs without fiber reinforcement had a fragment velocity distribution of 0-118.3 m/s, which are largely identical to that for a normal-strength concrete(NSC) slab. In addition, the fragment velocity was negatively correlated to the angle between the velocity vector and vertical direction. An empirical Eq. for the lead spall velocity of UHPC and NSC slabs was then proposed based on a large volume of existing experimental data.展开更多
The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and th...The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.展开更多
The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspens...The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.展开更多
Autoclaved aerated concrete(AAC) panels have ultra-light weight,excellent thermal insulation and energy absorption,so it is an ideal building material for protective structures.To improve the blast resistance of the A...Autoclaved aerated concrete(AAC) panels have ultra-light weight,excellent thermal insulation and energy absorption,so it is an ideal building material for protective structures.To improve the blast resistance of the AAC panels,three schemes are applied to strengthen the AAC panels through spraying 4 mm thick polyurea coating from top,bottom and double-sides.In three-point bending tests,the polyurea-coated AAC panels have much higher ultimate loads than the un-coated panels,but slightly lower than those strengthened by the carbon fiber reinforced plastics(CEFRPs).Close-in explosion experiments reveal the dynamic strengthening effect of the polyurea coating.Critical scaled distances of the strengthened AAC panels are acquired,which are valuable for the engineering application of the AAC panels in the extreme loading conditions.Polyurea coatings efficiently enhance the blast resistance of the bottom and double-sided polyurea-coated AAC panels.It is interesting that the polyurea-coated AAC panels have much more excellent blast resistance than the CFRP reinforced AAC panels,although the latter have better static mechanical properties.展开更多
In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics an...In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.展开更多
基金supported by the National Science Foundation of China(Grant Nos.12372361,12102427,12372335 and 12102202)the Fundamental Research Funds for the Central Universities(Grant No.30923010908)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0520).
文摘Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.
文摘The development of guidance technology has made it possible for the earth penetration weapons(EPWs)to impact the target repeatedly at a close range. To investigative the damage of single and sequential strike induced by the EPWs, experimental and numerical investigations are carried out in this paper.Firstly, a series of sequential explosion tests are conducted to provide the basic data of the crater size.Then, a numerical model is established to simulate the damage effects of sequential explosions using the meshfree method of Smoothed particle Galerkin. The effectiveness of numerical model is verified by comparison with the experimental results. Finally, based on dimensional analysis, several empirical formulas for describing the crater size are presented, including the conical crater diameter and the conical crater depth of the single explosion, the conical crater area and the joint depth of the secondary explosion. The formula for the single explosion expresses the relationship between the aspect ratio of the charge ranging from 3 to 7, the dimensionless buried depth ranging from 2 to 14 and the crater size. The formula for the secondary explosion expresses the relationship between the relative position of the two explosions and the crater size. All of data can provide reference for the design of protective structures.
基金the support provided by the Technology Innovation Project (Grant No. KYGYZB002201) for the research work
文摘Investigating the blast effects and mechanisms on typical finite-sized obstacles is essential for optimizing defense strategies and designing more robust barriers to deter terrorists and protect critical locations.This study investigates the blasting effects and underlying mechanisms of concrete frustums subjected to contact explosions,employing both numerical simulations and field tests.It focuses on the effects of top and side blasting,with particular emphasis on fracture modes,damage patterns,and fragment sizes,as well as the causes of different failure modes and the propagation of stress waves.The study also explores the blasting effects of detonating explosives at varying positions along the side and with different charge amounts.The results show that side-blasting leads to complete fragmentation,with tensile waves playing a significant role in creating extensive damage zones that propagate parallel to the frustum's outer surface,concentrating damage near the surface.During top-blasting,the upper half of the frustum undergoes fragmentation,while the lower half experiences cracking.Tensile waves propagate from the top to the bottom surface,forming larger blocks in regions with lower wave intensity.Three distinct damage zones within the frustum were identified,and a series of mathematical formulas were derived to describe the relationship between the maximum fragment size and charge mass.As the charge mass increased from 1.0 kg to 4.0 kg,the maximum fragment size decreased.Detonation at the center of the frustum's side resulted in the most severe fragmentation,with a 51.8%reduction in fragment size compared to other detonation positions.Finally,four broken modes were classified,each influenced by charge mass and explosive location.This study provides valuable insights for optimizing civil blasting operations and designing protective engineering structures.
文摘Many researchers have focused on the behavior of fiber-reinforced concrete(FRC)in the construction of various defensive structures to resist against impact forces resulting from explosions and projectiles.However,the lack of sufficient research regarding the resistance of functionally graded fiber-reinforced concrete against projectile impacts has resulted in a limited understanding of the performance of this concrete type,which is necessary for the design and construction of structures requiring great resistance against external threats.Here,the performance of functionally graded fiber-reinforced concrete against projectile impacts was investigated experimentally using a(two-stage light)gas gun and a drop weight testing machine.For this objective,12 mix designs,with which 35 cylindrical specimens and 30 slab specimens were made,were prepared,and the main variables were the magnetite aggregate vol%(55%)replacing natural coarse aggregate,steel fiber vol%,and steel fiber type(3D and 5D).The fibers were added at six vol%of 0%,0.5%,0.75%,1%,1.25%,and 1.5%in 10 specimen series(three identical specimens per each series)with dimensions of 40×40×7.5 cm and functional grading(three layers),and the manufactured specimens were subjected to the drop weight impact and projectile penetration tests by the drop weight testing machine and gas gun,respectively,to assess their performance.Parameters under study included the compressive strength,destruction level,and penetration depth.The experimental results demonstrate that using the magnetite aggregate instead of the natural coarse aggregate elevated the compressive strength of the concrete by 61%.In the tests by the drop weight machine,it was observed that by increasing the total vol%of the fibers,especially by increasing the fiber content in the outer layers(impact surface),the cracking resistance and energy absorption increased by around 100%.Note that the fiber geometry had little effect on the energy absorption in the drop weight test.Investigating the optimum specimens showed that using 3D steel fibers at a total fiber content of 1 vol%,consisting of a layered grading of 1.5 vol%,0 vol%,and 1.5 vol%,improved the penetration depth by 76%and lowered the destruction level by 85%.In addition,incorporating the 5D steel fibers at a total fiber content of 1 vol%,consisting of the layered fiber contents of 1.5%,0%,and 1.5%,improved the projectile penetration depth by 50%and lowered the damage level by 61%compared with the case of using the 3D fibers.
基金funded by the National Natural Science Foundation of China(Grant Nos.12472390 and 12102292)the special fund for Science and Technology Innovation Teams of Shanxi Province(Grant No.202204051002006)。
文摘The motion characteristics of projectile during oblique penetration into concrete were studied using a three-dimensional meso-scale model.The finite element model validation and parameter chosen were conducted by comparing the experimental data,with computational efficiency enhanced through improved mesh refinement.Penetration simulations involving deformable projectiles at various incident angles analyzed the effects of aggregate volume fraction and particle size on ballistic trajectory and terminal deflection.Sensitivity analysis reveals a strong power-law relationship between aggregate content and the projectile's deflection angle.The increase in aggregate content will enhance the confinement effect,shorten the intrusion distance of the projectile,and lead to a decrease in the deflection angle of the projectile.The effect of aggregate particle size on the projectile deflection angle follows a Gaussian distribution.The maximum deflection angle occurs when the aggregate particle size is between 2.7 and 3.1 times the projectile diameter.An increase in particle size reduces the number of aggregate-mortar interfaces at the same aggregate volume fraction,leading to an enlargement of the damage zone in concrete,a decrease in the number of cracks,and an increase in crack length.These findings enhance the understanding of concrete penetration mechanisms and offers valuable insights for engineering structure protection.
基金Supported by the National Natural Science Foundation of China(Grant No.52078283)Shandong Provincial Natural Science Foundation(Project No.ZR2024MA094)。
文摘With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.
基金supported by the National Natural Science Foundations of China (Grant Nos. 52178515, 52078133)
文摘Concrete material model plays an important role in numerical predictions of its dynamic responses subjected to projectile impact and charge explosion.Current concrete material models could be distinguished into two kinds,i.e.,the hydro-elastoplastic-damage model with independent equation of state and the cap-elastoplastic-damage model with continuous cap surface.The essential differences between the two kind models are vital for researchers to choose an appropriate kind of concrete material model for their concerned problems,while existing studies have contradictory conclusions.To resolve this issue,the constitutive theories of the two kinds of models are firstly overviewed.Then,the constitutive theories between the two kinds of models are comprehensively compared and the main similarities and differences are clarified,which are demonstrated by single element numerical examples.Finally,numerical predictions for projectile penetration and charge explosion experiments on concrete targets are compared to further demonstrate the conclusion made by constitutive comparison.It is found that both the two kind models could be used to simulate the dynamic responses of concrete under projectile impact and blast loadings,if the parameter needed in material models are well calibrated,although some discrepancies between them may exist.
基金Supports from National Natural Science Foundation of China(U20A20286 and 12372135)。
文摘Expanded polystyrene(EPS)concrete,known for its environmental friendliness,energy absorption capacity,and low impedance,has significant potential application in the fields of wave absorption and vibration reduction.This study designed and prepared EPS concrete materials with four levels of density.Quasi-static uniaxial compression and Split Hopkinson Pressure Bar(SHPB)impact tests were conducted to obtain stress-strain curves,elastic moduli,failure modes,energy absorptions,and strain rate effects of the EPS concrete under quasi-static and dynamic loading conditions.The influences of density on various performance indicators were analyzed.By combining the Zhu-Wang-Tang(ZWT)constitutive model with a modified elastic-brittle model,a modified dynamic constitutive model was proposed.The accuracy of the model was validated by the experimental data.The results indicate that the addition of EPS particles enhances the ductility of the EPS concrete.The EPS concrete has significant strain rate effect,which gets stronger as density increases.The modifiedconstitutive model accurately characterizes the dynamic stress-strain curves of the EPS concrete.
基金supported by the National Natural Science Foundation of China(Grant Nos.52178515 and 12472399)。
文摘With the application of hypervelocity weapons in warfare,comprehensively evaluating their destructive effects is of particular interest for protective engineering.Existing studies mostly focused on the depth of penetration by hypervelocity projectile,while investigation on stress waves associated with hypervelocity penetration was very limited.To clarify the generation and propagation of stress waves in concrete targets induced by hypervelocity projectile penetration,in the present study,six spherical projectile penetration tests on concrete targets were firstly conducted with projectile velocity ranged from 1875 m/s to 3940 m/s,in which the stress waves were carefully measured by the PVDF transducers.Then corresponding numerical models were developed and validated,and based on the validated numerical model the mechanisms of generation and propagation of stress waves were clarified.It was found that the stress waves observed during hypervelocity penetration are generated by the continuous interactions of projectile and target during penetration,and have unique characteristics such as the directionality and the"two peaks"phenomenon when compared with the stress waves generated by charge explosion.Finally,the effects of projectile velocity,projectile material,and target strength on the stress waves below the penetration depth we re numerically investigated,and two important indexes for evaluating the stress waves by hypervelocity penetration were proposed.
基金Project(50908229) supported by the National Natural Science Foundation of ChinaProjects(2008G031-N, 50908229, 10125C131) supported by Technological Research and Development Programs of the Ministry of Railways, China
文摘Air content, spacing factor and specific surface of fresh concrete and hardened concrete with different air contents, slumps and mineral admixtures (fly ash, slag, fly ash + slag, fly ash + slag + silica fume composite) were studied by the air-void analyzer (AVA) method and the microscopical method. The correlations between the test results obtained from different methods were analyzed. The results show that, there is a close correlation of air content and spacing factor between the fresh concrete and the hardened concrete, but the specific surface correlation is weak. The air content of concrete measured by the AVA method is smaller than that of the pressure method and the microscopical method, because AVA device captures only the air voids with the size smaller than 3 mm. Spacing factor of the fresh concrete measured by the AVA method is greater than that of the hardened concrete measured by the microscopical method, while the specific surface is smaller. When the criterion of 4%-7% air content measured by the pressure method and microscopical method is acceptable for concrete freezing-thawing (F-T) durability in cold weather, the air content measured by the AVA method should be 2.4%-4.6%. For the concrete F-T durability, when the criterion of the spacing factor measured by the microscopical method is 300 μm, the spacing factor measured by the AVA method should be 360 μm.
基金Project(51078294)supported by the National Natural Science Foundation of ChinaProject(201101411100025)supported by the Doctoral Fund of Ministry of Education of China
文摘An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures.
基金Projects(50438020 50578162) supported by the National Natural Sceince Foundation of China
文摘Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.
基金Project(50838001) supported by the National Natural Science Foundation of China
文摘In order to investigate the size effect and other effects on the stress-strain relationship of confined concrete, 42 specimens with different sizes and section shapes were placed under axial compression loading. Effects of key parameters such as size of specimens, tie configuration, transverse reinforcement ratio, and concrete cover were studied. The results show that for specimens with the same configuration and the same volumetric ratio of the transverse reinforcement, along with the increasing specimen size, the peak stress, peak strain and deformation of the post-peak show a down trend, however, the volumetric ratio of the transverse reinforcement is lowered, the decreasing of the peak stress is accelerated, but the decreasing of the deformation is slow down. For specimens with the same volumetric ratio but different configurations of transverse reinforcement, though the transverse reinforcement configuration becomes more complicated, the peak stress of the large size specimen does not improve more than that of the small size. However, the deformation occurs before the stress declines to 85% of peak stress, and the improvement with the grid pattern tie configuration is much greater due to size effect.
文摘This work presents a numerical simulation of ballistic penetration and high velocity impact behavior of plain and reinforced concrete panels.This paper is divided into two parts.The first part consists of numerical modeling of reinforced concrete panel penetrated with a spherical projectile using concrete damage plasticity(CDP)model,while the second part focuses on the comparison of CDP model and Johnson-Holmquist-2(JH-2)damage model and their ability to describe the behavior of concrete panel under impact loads.The first and second concrete panels have dimensions of 1500 mm1500 mm150 mm and 675 mm675 mm200 mm,respectively,and are meshed using 8-node hexahedron solid elements.The impact object used in the first part is a spherical projectile of 150 mm diameter,while in the second part steel projectile of a length of 152 mm is modeled as rigid element.Failure and scabbing characteristics are studied in the first part.In the second part,the comparison results are presented as damage contours,kinetic energy of projectile and internal energy of the concrete.The results revealed a severe fracture of the panel and high kinetic energy of the projectile using CDP model comparing to the JH-2 model.In addition,the internal energy of concrete using CDP model was found to be less comparing to the JH-2 model.
文摘Factors that have effect on concrete creep include mixture composition,curing conditions,ambient exposure conditions,and element geometry.Considering concrete mixtures influence and in order to improve the prediction of prestress loss in important structures,an experimental test under laboratory conditions was carried out to investigate compression creep of two high performance concrete mixtures used for prestressed members in one bridge.Based on the experimental results,a power exponent function of creep degree for structural numerical analysis was used to model the creep degree of two HPCs,and two series of parameters of this function for two HPCs were calculated with evolution program optimum method.The experimental data was compared with CEB-FIP 90 and ACI 209(92) models,and the two code models both overestimated creep degrees of the two HPCs.So it is recommended that the power exponent function should be used in this bridge structure analysis.
基金supported by the National Natural Science Foundation of China[No.51978166]。
文摘When an explosion occurs close to or partially within the face of a concrete structure, fragments are rapidly launched from the opposite face of the structure owing to concrete spalling, posing a significant risk to nearby personnel and equipment. To study the lead fragment velocity of ultra-high-performance concrete(UHPC), partially embedded explosion experiments were performed on UHPC slabs of limited thickness using a cylindrical trinitrotoluene charge. The launch angles and velocities of the resulting fragments were the determined using images collected by high-speed camera to document the concrete spalling and fragment launching process. The results showed that UHPC slabs without fiber reinforcement had a fragment velocity distribution of 0-118.3 m/s, which are largely identical to that for a normal-strength concrete(NSC) slab. In addition, the fragment velocity was negatively correlated to the angle between the velocity vector and vertical direction. An empirical Eq. for the lead spall velocity of UHPC and NSC slabs was then proposed based on a large volume of existing experimental data.
基金Project(N2018G034)supported by China Railway Corporation。
文摘The comparative research on the seismic performance of grouted sleeve connected pier(GS)and prestressed precast segmental concrete pier(PC)is mostly carried out by numerical simulation.In this study,the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration.Two kinds of 1/5-scale assembled double-column specimens are made,and the quasi-static tests are carried out.The overall seismic performance of the two spliced piers is studied,and compared in terms of failure mechanism,bearing capacity,ductility,stiffness and energy dissipation capacity.The results show that the failure modes of both GS pier and PC pier are characterized by bending.However,the specific failure location and form are different.The GS pier presents a complete hysteretic curve,large equivalent stiffness and strong energy dissipation capacity.The hysteretic area of the PC pier is small.However,it has good self-reset ability and quasi-static residual displacement.Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements.The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading.The load−displacement curves are in good agreement with the backbone curves of the test results.
基金Project(201606090050)supported by China Scholarship CouncilProject(51278104)supported by the National Natural Science Foundation of China+2 种基金Project(2011Y03)supported by Jiangsu Province Transportation Scientific Research Programs,ChinaProject(20133204120015)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(12KJB560003)supported by Jiangsu Province Universities Natural Science Foundation,China
文摘The structural health status of Hunan Road Bridge during its two-year service period from April 2015 to April 2017 was studied based on monitored data.The Hunan Road Bridge is the widest concrete self-anchored suspension bridge in China at present.Its structural changes and safety were evaluated using the health monitoring data,which included deformations,detailed stresses,and vibration characteristics.The influences of the single and dual effects comprising the ambient temperature changes and concrete shrinkage and creep(S&C)were analyzed based on the measured data.The ANSYS beam finite element model was established and validated by the measured bridge completion state.The comparative analyses of the prediction results of long-term concrete S&C effects were conducted using CEB-FIP 90 and B3 prediction models.The age-adjusted effective modulus method was adopted to simulate the aging behavior of concrete.Prestress relaxation was considered in the stepwise calculation.The results show that the transverse deviations of the towers are noteworthy.The spatial effect of the extra-wide girder is significant,as the compressive stress variations at the girder were uneven along the transverse direction.General increase and decrease in the girder compressive stresses were caused by seasonal ambient warming and cooling,respectively.The temperature gradient effects in the main girder were significant.Comparisons with the measured data showed that more accurate prediction results were obtained with the B3 prediction model,which can consider the concrete material parameters,than with the CEB-FIP 90 model.Significant deflection of the midspan girder in the middle region will be caused by the deviations of the cable anchoring positions at the girder ends and tower tops toward the midspan due to concrete S&C.The increase in the compressive stresses at the top plate and decrease in the stresses at the bottom plate at the middle midspan will be significant.The pre-deviations of the towers toward the sidespan and pre-lift of the midspan girder can reduce the adverse influences of concrete S&C on the structural health of the self-anchored suspension bridge with extra-wide concrete girder.
基金Supports from the National Natural Science Foundation of China(11672130,51508567,51478465,and 51308544)the State Key Laboratory of Mechanics and Control of Mechanical Structures(MCMS-0217G03)the State Key Laboratory for Disaster Reduction in Civil Engineering(SLDRCE16-01)。
文摘Autoclaved aerated concrete(AAC) panels have ultra-light weight,excellent thermal insulation and energy absorption,so it is an ideal building material for protective structures.To improve the blast resistance of the AAC panels,three schemes are applied to strengthen the AAC panels through spraying 4 mm thick polyurea coating from top,bottom and double-sides.In three-point bending tests,the polyurea-coated AAC panels have much higher ultimate loads than the un-coated panels,but slightly lower than those strengthened by the carbon fiber reinforced plastics(CEFRPs).Close-in explosion experiments reveal the dynamic strengthening effect of the polyurea coating.Critical scaled distances of the strengthened AAC panels are acquired,which are valuable for the engineering application of the AAC panels in the extreme loading conditions.Polyurea coatings efficiently enhance the blast resistance of the bottom and double-sided polyurea-coated AAC panels.It is interesting that the polyurea-coated AAC panels have much more excellent blast resistance than the CFRP reinforced AAC panels,although the latter have better static mechanical properties.
基金Project(2011ZA05) supported by the State Key Laboratory’s Autonomous Project of Subtropical Building Science in South China University of Technology
文摘In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.