期刊文献+
共找到236篇文章
< 1 2 12 >
每页显示 20 50 100
The effects of compressibility and strength on penetration of long rod and jet 被引量:2
1
作者 Weng-jie Song Xiao-wei Chen Pu Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第2期99-108,共10页
The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at... The approximate compressible model is adopted to study the effects of strength and compressibility on the penetration by WHA long rod and copper jet into semi-infinite target in detail. For WHA rod penetrating PMMA at 2 km/s <V <5 km/s, the compressibility has a significant effect on the penetration efficiency. We clarify how compressibility affects the penetration efficiency by changing the stagnation pressures of the rod and target. For WHA rod penetrating 4340 Steel and 6061-T6 Al at 2 km/s < V < 10 km/s, the effect of strength is strong and the effect of compressibility is negligible at lower impact velocity, whilst the effect of strength is weak and the effect of compressibility becomes stronger at higher impact velocity. For the copper jet penetrating 4030 Steel, 6061-T6 Al and PMMA. the virtual origin model is adopted, and the compressibility and strength are implicitly considered by the linear relation between the penetration velocity and impact velocity. The effects of compressibility and target resistance on penetration efficiency are studied. The results show that the target resistance has a significant effect on the penetration efficiency. Howver PMMA is much more compressible than copper and the huge difference of compressibility has a significant effect on the penetration by hypervelocity copper jet into PMMA. 展开更多
关键词 compressibility STRENGTH LONG ROD JET Compressible MODEL Virtual origin MODEL
在线阅读 下载PDF
Low secondary compressibility and shear strength of Shanghai Clay 被引量:1
2
作者 李青 吴宏伟 刘国彬 《Journal of Central South University》 SCIE EI CAS 2012年第8期2323-2332,共10页
In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to... In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests. 展开更多
关键词 Shanghai Clay block sampling secondary compressibility soil structure undrained shear strength
在线阅读 下载PDF
Effects of compressibility on the Rayleigh-Taylor instability in Z-pinch implosions
3
作者 HUANG Lin JIAN Guang-de 《核聚变与等离子体物理》 EI CAS CSCD 北大核心 2006年第2期87-94,共8页
The effects of compressibility on the Rayleigh-Taylor instability in Z-pinch implosion plasmas are investigated by means of simple slab geometry.The linear mode equation,which includes main steady-state quantities and... The effects of compressibility on the Rayleigh-Taylor instability in Z-pinch implosion plasmas are investigated by means of simple slab geometry.The linear mode equation,which includes main steady-state quantities and their gradients,is derived.Numerical solutions are presented.The incompressible fluid result is also obtained.These results indicate that the linear growth rate of the Rayleigh-Taylor instability for the compressible magnetohydrodynamic fluid is far larger than one in the incompressible situation.Therefore,the compressible systems are all more unstable than the incompressible ones. 展开更多
关键词 Z-PINCH Rayleigh-Taylor instability compressibility Growth rate.
在线阅读 下载PDF
Undrained mechanical behavior of unsaturated completely weathered granite:Experimental investigation and constitutive modeling 被引量:1
4
作者 DU Shao-hua MA Jin-yin +2 位作者 RUAN Bo WU Gen-shui ZHANG Rui-chao 《Journal of Central South University》 2025年第6期2307-2327,共21页
The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique natu... The undrained mechanical behavior of unsaturated completely weathered granite(CWG)is highly susceptible to alterations in the hydraulic environment,particularly under uniaxial loading conditions,due to the unique nature of this soil type.In this study,a series of unconfined compression tests were carried out on unsaturated CWG soil in an underground engineering site,and the effects of varying the environmental variables on the main undrained mechanical properties were analyzed.Based on the experimental results,a novel constitutive model was then established using the damage mechanics theory and the undetermined coefficient method.The results demonstrate that the curves of remolded CWG specimens with different moisture contents and dry densities exhibited diverse characteristics,including brittleness,significant softening,and ductility.As a typical indicator,the unconfined compression strength of soil specimens initially increased with an increase in moisture content and then decreased.Meanwhile,an optimal moisture content of approximately 10.5%could be observed,while a critical moisture content value of 13.0%was identified,beyond which the strength of the specimen decreases sharply.Moreover,the deformation and fracture of CWG specimens were predominantly caused by shear failure,and the ultimate failure modes were primarily influenced by moisture content rather than dry density.Furthermore,by comparing several similar models and the experimental data,the proposed model could accurately replicate the undrained mechanical characteristics of unsaturated CWG soil,and quantitatively describe the key mechanical indexes.These findings offer a valuable reference point for understanding the underlying mechanisms,anticipating potential risks,and implementing effective control measures in similar underground engineering projects. 展开更多
关键词 completely weathered granite undrained mechanical behavior environmental variable unconfined compression test constitutive model
在线阅读 下载PDF
Strength Development of Alkali-activated Binders Prepared with Mechanically Ground Fly Ash During Microwave-curing
5
作者 ZHU Huimei LIU Yu LI Hui 《材料导报》 北大核心 2025年第20期108-114,共7页
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ... Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA. 展开更多
关键词 alkali-activated fly ash binder microwave-curing particle size compressive strength
在线阅读 下载PDF
A comprehensive study of the mechanical properties of rock-like materials for inelastic deformation model establishment
6
作者 TRIMONOVA Mariia STEFANOV Yuri +1 位作者 DUBINYA Nikita BAKEEV Rustam 《地质力学学报》 北大核心 2025年第3期475-490,共16页
[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study... [Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development. 展开更多
关键词 plastic deformation internal friction shear strength triaxial compression “Brazilian”test loading diagrams
在线阅读 下载PDF
Block sparse compressed sensing with frames:Null space property and l_(2)/l_(q)(0
7
作者 WU Fengong ZHONG Penghong QIN Yuehai 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期173-182,共10页
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ... This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise. 展开更多
关键词 Compressed sensing block sparse l2/lq-synthesis method null space property
在线阅读 下载PDF
Effect of water on dynamic mechanical properties of coal under different depth stress conditions
8
作者 LI Sheng-wei GAO Ming-zhong +2 位作者 LI Ye-xue WANG Jun ZENG Gang 《Journal of Central South University》 2025年第1期220-228,共9页
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-... Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters. 展开更多
关键词 COAL mining depths water saturation SHPB dynamic compressive strength
在线阅读 下载PDF
Strength and failure characteristics of hard rock containing a single structural plane under varied loading angles : A true triaxial investigation
9
作者 XU Huai-sheng LI Shao-jun +3 位作者 XU Ding-ping LIU Xu-feng FENG Guang-liang WANG Zhao-feng 《Journal of Central South University》 2025年第5期1903-1921,共19页
The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compr... The spatial relationship between structural planes and principal stresses significantly affects the mechanical properties of deep hard rock.This paper examines the effect of the loading angle under true triaxial compression.While previous studies focused on the angleβbetween the maximum principal stress and the structural plane,the role of angleω,between the intermediate principal stress and the structural plane,is often overlooked.Utilizing artificially prefabricated granite specimens with a single non-penetrating structural plane,we set the loading angleβto range from 0°to 90°across seven groups,and assignedωvalues of 0°and 90°in two separate groups.The results show that the peak strength is negatively correlated withβup to 45°,beyond which it tends to stabilize.The angleωexerts a strengthening effect on the peak strength.Deformation mainly occurs post-peak,with the strain values ε_(1) and ε_(3) reaching levels 2−3 times higher than those in intact rock.The structural plane significantly influences failure mode whenω=0°,while failure localizes near the σ_(3) surface of the specimens whenω=90°.The findings enhance data on structural plane rocks under triaxial compression and inform theoretical research,excavation,and support design of rock structures. 展开更多
关键词 true triaxial compression hard rock structural plane loading angle STRENGTH failure characteristics
在线阅读 下载PDF
Failure mechanism and damage constitutive model of cemented tailings backfill with different cement-tailings ratios under uniaxial compression
10
作者 RU Wen-kai LI Di-yuan +2 位作者 HAN Zhen-yu LUO Ping-kuang GONG Hao 《Journal of Central South University》 2025年第8期2979-2997,共19页
Cemented tailings backfill(CTB)is a crucial support material for ensuring the long-term stability of underground goafs.A comprehensive understanding of its compressive mechanical behavior is essential for improving en... Cemented tailings backfill(CTB)is a crucial support material for ensuring the long-term stability of underground goafs.A comprehensive understanding of its compressive mechanical behavior is essential for improving engineering safety.Although extensive studies have been conducted on the uniaxial compressive properties of CTB,damage constitutive models that effectively capture its damage evolution process remain underdeveloped,and its failure mechanisms are not yet fully clarified.To address these gaps,this study conducted systematic uniaxial compression tests on CTB specimens prepared with varying cement-tailings ratios.The results revealed distinct compaction and softening phases in the stress−strain curves.A lower cement-tailings ratio significantly reduced the strength and deformation resistance of CTB,along with a decrease in elastic energy accumulation at peak stress and dissipation energy in the post peak stage.Based on these findings,a modified damage constitutive model was developed by introducing a correction factor,enabling accurate simulation of the entire uniaxial compression process of CTB with different cement-tailings ratios.Comparative analysis with classical constitutive models validated the proposed model’s accuracy and applicability in describing the compressive behavior of CTB.Furthermore,particle size distribution and acoustic emission tests were employed to investigate the influence of cement-tailings ratio on failure mechanisms.The results indicated that a lower cement-tailings ratio leads to coarser particle sizes,which intensify shear-related acoustic emission signals and ultimately result in more pronounced macroscopic shear failure.This study provides theoretical support and practical guidance for the optimal design of CTB mix ratios. 展开更多
关键词 filling mining cement-tailings ratio uniaxial compression damage constitutive model failure mechanism
在线阅读 下载PDF
Acoustic emission response and rupture evolution analysis of triaxial compression damage of hot dry rock under seawater fatigue dissolution
11
作者 LI Cun-bao LAN Ling +1 位作者 XIE He-ping HU Jian-jun 《Journal of Central South University》 2025年第8期3035-3056,共22页
Analyzing the fatigue damage characteristics of hot dry rock(HDR)affected by seawater thermal shock cycles is required for the efficient exploitation of HDR and the conservation of freshwater resources.Mechanical and ... Analyzing the fatigue damage characteristics of hot dry rock(HDR)affected by seawater thermal shock cycles is required for the efficient exploitation of HDR and the conservation of freshwater resources.Mechanical and acoustic emission(AE)monitoring tests were conducted during the triaxial compression of HDR at different confining pressures,temperatures,and numbers of seawater thermal shocks to investigate the seawater damage of HDR.The test results indicated an increase in the cumulative AE counts with increasing temperature and number of seawater thermal shocks,and a decrease in AE counts with increasing confining pressure.The effect of the number of seawater thermal shocks was significant.The AE counts were 276% higher at 15 than at 0 seawater thermal shocks.The b-value increased with the number of thermal shocks and stabilized after 5 shocks.Most of the damage was small fractures,which reduced the rock’s damage resistance.The AE time series under HDR triaxial compression exhibited multifractal features.High energy AE events dominated the damage mechanism of HDR,indicating shear damage to the HDR.Therefore,this study can provide a reference for seawater as a heat transfer fluid in the design of geothermal energy resource extraction. 展开更多
关键词 fatigue damage hot dry rock seawater thermal shocks triaxial compression acoustic emission
在线阅读 下载PDF
Tension and compression creep aging asymmetry of a pre-treated Al-Zn-Mg-Cu alloy
12
作者 LAO Shan-feng XU Ke-ren +6 位作者 WANG Tao ZHAN Li-hua XU Yong-qian HUANG Ming-hui MA Bo-lin YANG You-liang GUO Wen-xing 《Journal of Central South University》 2025年第1期1-20,共20页
The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase... The asymmetric creep aging behaviors of a pre-treated Al-Zn-Mg-Cu alloy under high and low stresses have been investigated for high precision creep age forming application of aluminum integral panels.With the increase of applied stress,the creep strains under the tensile stresses are higher than those of compressive stresses and the asymmetry of creep strain is more obvious.However,the mechanical properties of tensile stress creep aged samples are lower than those of compressive stress creep aged samples.Dislocation density,dislocation moving velocity and the proportion of precipitates directly lead to the asymmetry of creep strain and mechanical properties after tensile-compressive creep aging process.In addition,the tensile and compressive stresses have little effect on the width of the precipitate-free zone(PFZ).It indicates that in the high stress creep age forming process of the pretreated Al-Zn-Mg-Cu alloy,the tensile stress promotes the dislocation motion to obtain a better creep strain but weakens its mechanical properties compared with the compressive stress.In the field of civil aviation aircraft component manufacturing,the introduction of tension and compression stress asymmetry into the creep constitutive model may improve the accuracy of creep age forming components. 展开更多
关键词 Al-Zn-Mg-Cu alloy mechanical properties creep ageing tension and compression asymmetry dislocation density
在线阅读 下载PDF
Synthesis of backfill foam lightweight soil from bauxite tailings slurry and industrial byproducts
13
作者 OU Xiao-duo CHEN Fu-gui +3 位作者 LYU Zheng-fan JIANG Jie LIAO Bang YE Geng-chang 《Journal of Central South University》 2025年第8期3057-3069,共13页
Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water conten... Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water content and mud water separation rate was established to achieve efficient resource utilization,and the feasibility of foam lightweight soil(FLS)prepared from BT was investigated.The effects of industrial waste residues(fly ash and slag powder)on the properties of FLS were studied.Meanwhile,the micro-mechanisms were revealed by XRD,SEM-EDS,and TG-DSC.The results revealed that fly ash reduced the workability and compressive strength of FLS.Slag powder can significantly enhance the compressive strength of FLS,which increased by 18.60%-23.26%,17.07%-58.54% and 12.12%-52.12%,respectively.Besides,slag powder can improve the long-term water stability performance and enhance carbonation resistance.XRD and thermal analyses showed that adding fly ash decreased the hydration degree of FLS,leading to a decrease in the hydration products.Slag powder improved the pore structure and compacted the skeleton structure of FLS.This study would provide an effective way to realize the resource utilization of BT,fly ash,and slag powder,with certain socio-economic and environmental benefits. 展开更多
关键词 foam lightweight soil bauxite tailing slurry compressive strength volume absorption microscopic property
在线阅读 下载PDF
A review of the experimental and numerical studies on the compression behavior of the additively produced metallic lattice structures at high and low strain rates
14
作者 Muhammad Arslan Bin Riaz Mustafa Guden 《Defence Technology(防务技术)》 2025年第7期1-49,共49页
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in... Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures. 展开更多
关键词 Metallic lattice structures Additive manufacturing Strain rate sensitivity MICROSTRUCTURE Dynamic compression High strain rate loading MODELLING
在线阅读 下载PDF
Crashworthiness design of concave polygonal CFRP tubes for eVTOL applications under multi-angle compression loading
15
作者 Jie Fu Qiang Liu +1 位作者 Xiao Liu Yanqin Zhang 《Defence Technology(防务技术)》 2025年第10期100-115,共16页
The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limit... The electric vertical takeoff and landing(e VTOL)aircraft shows great potential for rapid military personnel deployment on the battlefield.However,its susceptibility to control loss,complex crashes,and extremely limited bottom energy-absorbing space demands higher comprehensive crashworthiness of its subfloor thin-walled structures.This study investigated the energy absorption capacity of novel concave polygonal carbon fiber reinforced plastics(CFRP)tubes under multi-angle collisions.Quasistatic compression experiments and finite element simulations were conducted to assess the failure mode and energy absorption.The influences of cross-section shapes,loading conditions,and geometry parameters on crashworthiness metrics were further analyzed.The results revealed that,under the similar weight,concave polygonal tubes exhibited superior energy absorption under axial loads compared to regular polygonal and circular tubes,attributed to the increased number of axial splits.However,both regular and concave polygonal tubes,particularly the latter,demonstrated reduced oblique energy absorption compared to traditional square tubes with the increasing ratio of SEA value decreased from 20%-16%.Notably,this reduction in energy absorption can be compensated for by the implementation of inward and outward crusher plugs,and with them,the concave polygonal tubes demonstrated outstanding overall crashworthiness performance under multiple loading conditions.This concave cross-sectional design methods could serve as a guidance for the development of the eVTOL subfloor. 展开更多
关键词 Carbon fiber reinforced plastics Concave polygonal tubes Multi-angle compression loading Energy absorption performance
在线阅读 下载PDF
Nonperiodic interrupted sampling repeater jamming suppression for inverse synthetic aperture radar
16
作者 WU Qihua ZHAO Feng +3 位作者 ZHAO Tiehua LIU Xiaobin XU Zhiming XIAO Shunping 《Journal of Systems Engineering and Electronics》 2025年第4期940-950,共11页
Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,whi... Nonperiodic interrupted sampling repeater jamming(ISRJ)against inverse synthetic aperture radar(ISAR)can obtain two-dimensional blanket jamming performance by joint fast and slow time domain interrupted modulation,which is obviously dif-ferent from the conventional multi-false-target deception jam-ming.In this paper,a suppression method against this kind of novel jamming is proposed based on inter-pulse energy function and compressed sensing theory.By utilizing the discontinuous property of the jamming in slow time domain,the unjammed pulse is separated using the intra-pulse energy function diffe-rence.Based on this,the two-dimensional orthogonal matching pursuit(2D-OMP)algorithm is proposed.Further,it is proposed to reconstruct the ISAR image with the obtained unjammed pulse sequence.The validity of the proposed method is demon-strated via the Yake-42 plane data simulations. 展开更多
关键词 jamming suppression compressed sensing(CS) interrupted sampling repeater jamming(ISRJ) energy function inverse synthetic aperture radar(ISAR).
在线阅读 下载PDF
钢筋混凝土连续梁抗连续倒塌压拱机制的数值分析
17
作者 李易 刘永超 +1 位作者 程小卫 孙海林 《北京工业大学学报》 CAS CSCD 北大核心 2024年第11期1350-1358,共9页
为了验证既有结构抗连续倒塌压拱(compressive arch action,CAA)机制理论在工程尺度中的适用性问题,基于有限元分析软件LS-DYNA建立了钢筋混凝土连续梁的全精细数值模型,并通过已有实验验证了该模型的可靠性。基于该模型建立9个足尺结... 为了验证既有结构抗连续倒塌压拱(compressive arch action,CAA)机制理论在工程尺度中的适用性问题,基于有限元分析软件LS-DYNA建立了钢筋混凝土连续梁的全精细数值模型,并通过已有实验验证了该模型的可靠性。基于该模型建立9个足尺结构的数值模型,考虑了工程常用的截面高度、跨度和配筋率。基于数值模拟的结果,分析了上述结构参数对CAA机制发展的影响。结果表明:随着配筋率的增大,CAA机制对结构抗连续倒塌的增强作用逐渐降低;在9~12的跨高比范围内,CAA机制对结构抗连续倒塌的增强作用提升,而在12~15的跨高比范围内,增强作用降低。 展开更多
关键词 钢筋混凝土 连续梁 连续倒塌 压拱(compressive arch action CAA)机制 倒塌抗力 倒塌变形
在线阅读 下载PDF
A whole process damage constitutive model for layered sandstone under uniaxial compression based on Logistic function 被引量:2
18
作者 LIU Dong-qiao GUO Yun-peng +1 位作者 LING Kai LI Jie-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2411-2430,共20页
Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0... Bedding structural planes significantly influence the mechanical properties and stability of engineering rock masses.This study conducts uniaxial compression tests on layered sandstone with various bedding angles(0°,15°,30°,45°,60°,75°and 90°)to explore the impact of bedding angle on the deformational mechanical response,failure mode,and damage evolution processes of rocks.It develops a damage model based on the Logistic equation derived from the modulus’s degradation considering the combined effect of the sandstone bedding dip angle and load.This model is employed to study the damage accumulation state and its evolution within the layered rock mass.This research also introduces a piecewise constitutive model that considers the initial compaction characteristics to simulate the whole deformation process of layered sandstone under uniaxial compression.The results revealed that as the bedding angle increases from 0°to 90°,the uniaxial compressive strength and elastic modulus of layered sandstone significantly decrease,slightly increase,and then decline again.The corresponding failure modes transition from splitting tensile failure to slipping shear failure and back to splitting tensile failure.As indicated by the modulus’s degradation,the damage characteristics can be categorized into four stages:initial no damage,damage initiation,damage acceleration,and damage deceleration termination.The theoretical damage model based on the Logistic equation effectively simulates and predicts the entire damage evolution process.Moreover,the theoretical constitutive model curves closely align with the actual stress−strain curves of layered sandstone under uniaxial compression.The introduced constitutive model is concise,with fewer parameters,a straightforward parameter determination process,and a clear physical interpretation.This study offers valuable insights into the theory of layered rock mechanics and holds implications for ensuring the safety of rock engineering. 展开更多
关键词 layered sandstone uniaxial compression damage evolution Logistic function constitutive model
在线阅读 下载PDF
Prediction and critical transition mechanism for granite fracture:Insights from critical slowing down theory 被引量:2
19
作者 WANG Chun-lai ZHOU Bao-kun +6 位作者 LI Chang-feng WEN Zhi-jie BAI Zhi-an ZHU Chao-yang SUN Liang XUE Xu-hui CAO Peng 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2748-2764,共17页
Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteris... Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteristics of AE signals preceding granite fracture,based on the critical slowing down(CSD)theory.The granite undergoes a transition from the stable phase to the fracture phase and exhibits a clear CSD phenomenon,characterized by a pronounced increase in variance and autocorrelation coefficient.The variance mutation points were found to be more identifiable and suitable as the primary criterion for predicting precursor information related to granite fracture,compared to the autocorrelation coefficient.It is noteworthy to emphasize that the CSD factor holds greater potential in elucidating the underlying mechanisms responsible for the critical transition of granite fracture,in comparison to the AE timing parameters.Furthermore,a novel multi-parameter collaborative prediction method for rock fracture was developed by comprehensively analyzing predictive information,including abnormal variation modes and the CSD factor of AE characteristic parameters.This method enhances the understanding and prediction of rock fracture-related geohazards. 展开更多
关键词 GRANITE triaxial compression acoustic emission rock fracture critical slowing down theory
在线阅读 下载PDF
A semantic segmentation-based underwater acoustic image transmission framework for cooperative SLAM 被引量:1
20
作者 Jiaxu Li Guangyao Han +1 位作者 Shuai Chang Xiaomei Fu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期339-351,共13页
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil... With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission. 展开更多
关键词 Semantic segmentation Sonar image transmission Learning-based compression
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部