Carbon dioxide (CO2) capture and geological storage (CCS) is one of promising technologies for greenhouse gas effect mitigation. Many geotechnical challenges remain during carbon dioxide storage field practices, a...Carbon dioxide (CO2) capture and geological storage (CCS) is one of promising technologies for greenhouse gas effect mitigation. Many geotechnical challenges remain during carbon dioxide storage field practices, among which effectively detecting CO2 from deep underground is one of engineering problems. This paper reviews monitoring techniques currently used during CO2 injection and storage. A method developed based on measuring seismic microtremors is of main interest. This method was first successfully used to characterize a site in this paper. To explore its feasibility in C02 storage monitoring, numerical simulations were conducted to investigate detectable changes in elastic wave signatures due to injection and geological storage of CO2. It is found that, although it is effective for shallow earth profile estimation, the surface wave velocity is not sensitive to the CO2 layer physical parameter variations,especially for a thin CO2 geological storage layer in a deep underground reservoir.展开更多
基金the financial supports from the State Key Laboratory for Geomechanics & Deep Underground Engineering, China University of Mining and Technology (No. SKLGDUEK1002)the Fundamental Research Funds for the Central Government Supported Universities of Tongji University, China (No. 0270219037)
文摘Carbon dioxide (CO2) capture and geological storage (CCS) is one of promising technologies for greenhouse gas effect mitigation. Many geotechnical challenges remain during carbon dioxide storage field practices, among which effectively detecting CO2 from deep underground is one of engineering problems. This paper reviews monitoring techniques currently used during CO2 injection and storage. A method developed based on measuring seismic microtremors is of main interest. This method was first successfully used to characterize a site in this paper. To explore its feasibility in C02 storage monitoring, numerical simulations were conducted to investigate detectable changes in elastic wave signatures due to injection and geological storage of CO2. It is found that, although it is effective for shallow earth profile estimation, the surface wave velocity is not sensitive to the CO2 layer physical parameter variations,especially for a thin CO2 geological storage layer in a deep underground reservoir.