期刊文献+
共找到156,834篇文章
< 1 2 250 >
每页显示 20 50 100
改进灰狼优化算法优化CNN-LSTM的PEMFC性能衰退预测
1
作者 高锋阳 刘庆寅 +2 位作者 赵丽丽 齐丰旭 刘嘉 《电力系统保护与控制》 北大核心 2025年第13期175-187,共13页
为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memo... 为进一步提高车用质子交换膜燃料电池(proton exchange membrane fuel cell, PEMFC)电堆性能衰退预测与剩余使用寿命预测精度,提出一种改进灰狼优化算法优化卷积神经网络-长短期记忆(convolutional neural network-long short-term memory, CNN-LSTM)的车用PEMFC性能衰退预测方法。首先,通过稳定小波变换对数据集去噪重构,使用改进灰狼算法对实测PEMFC电堆衰退数据进行分析,获得CNN-LSTM最优超参数。其次,利用最优超参数训练CNN-LSTM网络模型进行PEMFC性能衰退预测,并计算PEMFC电堆剩余使用寿命。最后,在电堆静态和动态工况下,将所提方法与传统长短期记忆循环网络、门控循环单元循环网络和未经优化的CNN-LSTM等模型预测进行比较。结果表明:在静态工况中,当训练集占比为60%时,所提方法相比传统CNN-LSTM预测结果均方根误差缩小59.02%,当训练集占比为70%时,PEMFC剩余使用寿命预测与实际相差1.16 h;在动态工况中,当训练集占比为40%时,平均绝对误差缩小18.78%。 展开更多
关键词 质子交换膜燃料电池 改进灰狼优化算法 卷积神经网络-长短期记忆 衰退预测 剩余使用寿命
在线阅读 下载PDF
基于多策略改进灰狼优化算法优化CNN-LSTM的IGBT寿命预测 被引量:2
2
作者 付聪 吴松荣 +2 位作者 柳博 张驰 王少惟 《半导体技术》 北大核心 2025年第2期161-169,共9页
针对绝缘栅双极型晶体管(IGBT)长期工作出现的老化失效问题,提出一种多策略改进灰狼优化算法优化卷积神经网络(CNN)和长短期记忆(LSTM)网络组合模型的IGBT寿命预测方法。分析IGBT的失效机理并建立CNN-LSTM组合预测模型。利用灰狼优化算... 针对绝缘栅双极型晶体管(IGBT)长期工作出现的老化失效问题,提出一种多策略改进灰狼优化算法优化卷积神经网络(CNN)和长短期记忆(LSTM)网络组合模型的IGBT寿命预测方法。分析IGBT的失效机理并建立CNN-LSTM组合预测模型。利用灰狼优化算法优化CNN-LSTM模型中的初始学习率等参数,为解决传统灰狼优化算法容易陷入局部最优解的问题,从最优解扰动、参数调整和搜索机制方面引入三种策略进行改进。最后,基于NASA研究中心提供的IGBT老化数据集对改进模型进行性能验证。仿真结果表明:对比LSTM、CNN-LSTM等模型,多策略改进灰狼优化算法优化的CNN-LSTM模型的均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)三个评价指标均为最优,可以有效应用于IGBT寿命预测。 展开更多
关键词 IGBT 长短期记忆网络 改进灰狼优化算法 莱维飞行策略 寿命预测
在线阅读 下载PDF
基于CNN-LSTM模型的土壤温湿度缺失数据填补算法
3
作者 张瑛进 史志强 +1 位作者 古丽米拉·克孜尔别克 库木斯·阿依肯 《湖北农业科学》 2025年第2期179-183,196,共6页
针对因恶劣环境、电池耗尽、硬件故障等原因导致的土壤温湿度传感器数据丢失问题,提出一种基于卷积神经网络的长短期记忆网络(CNN-LSTM)填补模型。以闪电河流域2019年土壤温湿度数据为试验数据,分别选用CNN、LSTM、TCN、CNN-TCN、CNN-LS... 针对因恶劣环境、电池耗尽、硬件故障等原因导致的土壤温湿度传感器数据丢失问题,提出一种基于卷积神经网络的长短期记忆网络(CNN-LSTM)填补模型。以闪电河流域2019年土壤温湿度数据为试验数据,分别选用CNN、LSTM、TCN、CNN-TCN、CNN-LSTM 5个模型对土壤温湿度传感器网络缺失数据进行填补,并采用Adam算法优化模型,使用决定系数(R^(2))、均方根误差(RMSE)、平均绝对误差(MAE)指数对模型填补结果进行评价。结果表明,采用线性插补算法获得完整的数据,CNN-LSTM模型的R^(2)为0.999 9,高于其他模型,MAE、RMSE分别为0.001 85、0.019 70,均远低于其他模型。采用k近邻插补算法获得完整的数据,CNN-LSTM模型的MAE、RMSE分别为0.000 12、0.000 12,均远低于其他模型,R^(2)为0.999 4,高于CNN模型、TCN模型;CNN-LSTM模型对土壤温湿度传感器数据缺失值的填补效果最好。CNN-LSTM模型在处理大规模土壤温湿度传感器缺失数据问题时具有较好的可行性和精确度。 展开更多
关键词 cnn-lstm模型 土壤 温湿度 缺失数据填补算法
在线阅读 下载PDF
基于CNN-LSTM的激光回波水深测量算法研究
4
作者 盛立 李沛泽 +2 位作者 徐杨睿 边君楠 梁琨 《航天返回与遥感》 北大核心 2025年第2期146-156,共11页
水深测量对于海洋环境变化性质的研究至关重要。传统的激光测深算法可以快速处理回波信号,从而实现水深的反演。然而,受水体浑浊度以及水体深度的影响,部分区域内得到的激光回波信号会出现水底回波信号偏弱或水面、水底回波信号重叠的现... 水深测量对于海洋环境变化性质的研究至关重要。传统的激光测深算法可以快速处理回波信号,从而实现水深的反演。然而,受水体浑浊度以及水体深度的影响,部分区域内得到的激光回波信号会出现水底回波信号偏弱或水面、水底回波信号重叠的现象,给水深信息的提取带来了挑战。为了解决这些问题,文章提出一种CNN-LSTM深度学习模型:首先将组成激光回波的若干个bin值作为数据点,然后通过深度学习方法将这些数据点分类为水面点、水底点和噪声点,再根据水面点与水底点的坐标位置计算激光回波信号的水深信息。用中国南海的激光回波数据进行数据点分类与测深试验,试验结显示:该模型的分类精度达到97.62%,同时,计算激光回波信号的水深信息与真实数据相比,均方根误差(RMSE)仅为0.46 m,精度高于单独的CNN、LSTM以及1D FCN等模型。文章的研究为激光回波测深技术领域提供了一套良好的思路及方案。 展开更多
关键词 激光回波 水深测量 深度学习 cnn-lstm 数据点分类
在线阅读 下载PDF
基于CNN-LSTM-CPO的ECT图像重建算法研究
5
作者 马敏 张啟明 《计量学报》 北大核心 2025年第6期876-883,共8页
针对电容层析成像(ECT)中逆问题求解病态性导致重建图像精度低的问题,提出了一种基于卷积长短期记忆网络(LSTM)注意力机制的图像重建算法。该算法利用卷积神经网络(CNN)进行特征提取,引入SE注意力机制(SE Net)加强模型对重要信息的关注... 针对电容层析成像(ECT)中逆问题求解病态性导致重建图像精度低的问题,提出了一种基于卷积长短期记忆网络(LSTM)注意力机制的图像重建算法。该算法利用卷积神经网络(CNN)进行特征提取,引入SE注意力机制(SE Net)加强模型对重要信息的关注度。结合LSTM进行特征预测,能有效改善ECT传统算法的病态性;通过冠豪猪优化算法(CPO)对模型参数进行优化,解决了神经网络算法中存在的模型调参困难问题。仿真结果表明:改进算法(CNN-LSTM-CPO)相比LBP算法、Landweber迭代算法、1D-CNN卷积网络,改进算法有效提高了重建质量。 展开更多
关键词 机器视觉 电容层析成像 卷积神经网络 长短期记忆网络 冠豪猪优化算法 注意力机制 智能参数优化
在线阅读 下载PDF
基于CNN-LSTM声速预测的水下移动节点定位算法 被引量:1
6
作者 彭铎 查海音 +2 位作者 曹坚 张彦博 张明虎 《电子测量与仪器学报》 CSCD 北大核心 2024年第11期146-157,共12页
本文旨在解决水下无线传感器网络中因水下环境复杂多变导致的长时延问题,该问题显著影响移动传感器节点间的信息传播效率,进而增大了节点定位误差。为此,本研究创新性地提出了一种基于CNN-LSTM声速预测的水下移动节点定位算法。首先,通... 本文旨在解决水下无线传感器网络中因水下环境复杂多变导致的长时延问题,该问题显著影响移动传感器节点间的信息传播效率,进而增大了节点定位误差。为此,本研究创新性地提出了一种基于CNN-LSTM声速预测的水下移动节点定位算法。首先,通过K-折交叉验证法对声速数据集进行科学划分,随后构建并训练了一个融合卷积神经网络(CNN)特征提取能力与长短期记忆网络(LSTM)序列建模能力的CNN-LSTM混合模型。此模型有效捕捉了声速数据中的空间与时间特征,显著提升了声速预测的准确度。在定位过程中,采用该模型预测的声速值进行到达时间差(TDOA)测距,并据此对测距结果进行精细修正。进而,针对不同节点密度条件下的未知节点,算法能够自适应地选择最适宜的测距定位方法,依据参考节点数量实现精准定位。实验结果显示,与现有的SLMP、DMP、NDSMP及BLSM定位算法相比,本文提出的MCLS定位算法在相同信标节点条件下,定位误差均值分别降低了46.96%、39.93%、27.64%和15.24%,显著提升了水下移动节点的定位精度与稳定性。 展开更多
关键词 水下传感器网络 声速预测 cnn-lstm模型 距离修正 移动节点定位
在线阅读 下载PDF
融合与分离之困:算法异化下学术用户AIGC技术使用意愿研究 被引量:2
7
作者 张宁 陈江玲 袁勤俭 《现代情报》 北大核心 2025年第5期34-48,共15页
[目的/意义]人工智能(AI)技术在创新发展的同时也产生了算法异化。本研究以算法进步带来的异化现象为切入点,引入矛盾态度概念,研究学术用户人工智能生成内容(AIGC)技术使用意愿形成机制,为促成学术用户AIGC技术合理使用、技术服务商改... [目的/意义]人工智能(AI)技术在创新发展的同时也产生了算法异化。本研究以算法进步带来的异化现象为切入点,引入矛盾态度概念,研究学术用户人工智能生成内容(AIGC)技术使用意愿形成机制,为促成学术用户AIGC技术合理使用、技术服务商改进平台功能以及相关部门算法治理提供借鉴与参考。[方法/过程]基于ABC态度模型和自我调节理论,从算法欣赏和算法厌恶的角度构建算法异化下影响学术用户AIGC技术使用的理论模型,采用结构方程模型分析(SEM)和模糊集定性比较分析(fsQCA)的方法,对425份问卷数据进行实证分析。[结果/结论]SEM结果证实了矛盾态度对学术用户的AIGC使用意愿具有显著负向影响。算法欣赏(信息质量、功能质量)负向影响矛盾态度,算法厌恶(信息异化、治理滞后)正向影响矛盾态度,矛盾态度则在算法欣赏、算法厌恶和使用意愿间起到中介作用。同时,算法素养和社会支持在矛盾态度和AIGC技术使用意愿间起着调节作用;fsQCA结果进一步显示,质量导向型(S1)、自我效能型(S2)和群体驱动型(S3)形成高使用意愿,而风险规避型(NS1)和规范缺失型(NS2)会引发非高使用意愿。 展开更多
关键词 信息行为 算法异化 矛盾态度 算法欣赏 算法厌恶 AIGC 使用意愿
在线阅读 下载PDF
算法市场的兴起:概念、挑战与未来发展 被引量:2
8
作者 林建浩 张一帆 +1 位作者 石沛昌 吴俊樊 《南方经济》 北大核心 2025年第1期1-17,共17页
人工智能是新一轮科技革命和产业变革的重要驱动力量,人工智能发展离不开数据、算法和算力组成的“三驾马车”。其中,算法作为激发算力潜能与实现数据价值的重要技术环节,是推进“人工智能+”进程与新质生产力形成的核心驱动力。与数据... 人工智能是新一轮科技革命和产业变革的重要驱动力量,人工智能发展离不开数据、算法和算力组成的“三驾马车”。其中,算法作为激发算力潜能与实现数据价值的重要技术环节,是推进“人工智能+”进程与新质生产力形成的核心驱动力。与数据要素市场相比,算法市场的商业化进展明显滞后,其交易机制和市场结构尚缺少系统深入的研究。文章探讨了算法市场的交易标的、市场结构及其关键特征,梳理了算法确权保护和算法流通机制方面面临的主要挑战,并总结了算法确权和流通市场发展的实践探索。通过分析算法市场与知识产权、数据要素市场,文章发现,算法与知识产权在创新性和虚拟性方面具有相似性,但对隐私数据的依赖性和开闭源算法的差异性使其确权保护更具复杂性。同时,算法与数据要素市场共享场景依赖和非标特征,但算法更强的外部依赖性对其流通提出了更高要求。针对我国算法市场当前面临的诸多挑战,文章提出构建以政府和市场双驱动为核心的算法交易与流通机制的政策建议,通过优化确权机制、促进供需匹配、降低使用门槛以及推动跨境流通,以促进算法市场的健康发展和广泛应用。 展开更多
关键词 算法市场 数字经济 算法确权
在线阅读 下载PDF
改进鲸鱼优化算法在前向激光散射颗粒测量技术粒径分布反演中的应用 被引量:1
9
作者 刘会玲 韩星星 +2 位作者 赵蓓 高冰 汪加洁 《光子学报》 北大核心 2025年第3期118-131,共14页
颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演... 颗粒粒度分布反演算法优化是前向激光散射法测量颗粒粒径分布中的一个关键问题。对于待测颗粒群粒径分布呈现双峰或多峰的情况,由于反演过程中的寻优参数成倍增加,反演计算量成指数增大,传统反演算法存在寻优效率快速下降,鲁棒性和反演精度迅速恶化等问题。通过改进鲸鱼优化算法在多维函数求解寻优中的特性,针对前向激光散射法中颗粒粒径分布反演问题提出了一种对数形式的自适应概率阈值和非线性变化的收敛因子,提高了鲸鱼优化算法在反演寻优过程中平衡全局搜索以及局部寻优的能力。通过反向学习方法进行初始化以及借助贪婪原则进行个体更新,可以实现对颗粒粒度分布的精确快速反演。仿真结果表明,该算法对在不同程度随机噪声下服从正态分布、Rosin-Rammler分布和Johnson'S_(B)分布的单峰及多峰分布具有很好的鲁棒性与反演精度。将该算法应用于聚苯乙烯标准颗粒群的实验测量,得到了很好的反演结果,验证了该算法在抗噪性能和测量准确性上的有效性。 展开更多
关键词 前向激光散射 群智能优化算法 鲸鱼优化算法 颗粒粒度分布 多峰分布
在线阅读 下载PDF
算法价格歧视违法性认定的挑战与应对 被引量:6
10
作者 曾迪 《中国流通经济》 北大核心 2025年第2期115-126,共12页
算法技术在数据收集、分析和应用等方面的优势能够帮助经营者快速实现价格歧视,提高经营效率。但算法价格歧视行为却对市场其他主体带来损害性影响,包括破坏社会对网络市场的公平感知、扭曲市场竞争秩序、侵害消费者知情权等传统权利和... 算法技术在数据收集、分析和应用等方面的优势能够帮助经营者快速实现价格歧视,提高经营效率。但算法价格歧视行为却对市场其他主体带来损害性影响,包括破坏社会对网络市场的公平感知、扭曲市场竞争秩序、侵害消费者知情权等传统权利和个人信息权等新型权益。为避免上述系列损害性后果持续扩散,亟须对司法实践如何开展算法价格歧视违法性认定做出回应。然而,基于我国当前相关法条分布零散且适用性不强、违法性认定规则的合理性和可行性存疑、抗辩理由适用不明等现实困境,司法实务部门在处理算法价格歧视案件时仍面临严峻挑战。原有的经营者滥用市场支配地位认定路径和违规处理个人信息认定路径不能满足现实司法实践所需,有必要从立法和司法层面对算法价格歧视违法性认定的第三条路径予以拓展与优化。在立法完善过程中,《电子商务法》作为我国电商领域的综合性法律,尤其适合作为规制算法价格歧视的法律依据,建议该法新增“不正当价格行为”违法认定类型,明确将保护消费者知情权和选择权不受侵犯设为底线,确立过错推定原则以平衡当事人之间的证明责任。在算法价格歧视违法性认定的司法实践中,坚持行为主体聚焦、侵害客体明晰、主观违背注意义务、客观造成消费者利益受损的“四要件”认定方法。在此基础上,《电子商务法》通过与《反垄断法》《个人信息保护法》等多部法律之间的协同配合,进一步夯实算法价格歧视违法性认定的法律基础,才能共同助力司法实践顺利推进。 展开更多
关键词 算法时代 算法价格歧视 消费者权益 违法性认定
在线阅读 下载PDF
基于多策略改进灰狼算法的无人机路径规划 被引量:1
11
作者 宋宇 高岗 +1 位作者 梁超 徐军生 《电子测量技术》 北大核心 2025年第1期84-91,共8页
针对传统的灰狼算法在三维路径规划中容易陷入局部最优等问题,本文提出了一种改进的灰狼算法。首先,对三维威胁区域进行环境建模,对约束条件规定无人机飞行的总成本函数;其次,在灰狼种群初始化中加入了混沌序列和准反向学习策略,增加了... 针对传统的灰狼算法在三维路径规划中容易陷入局部最优等问题,本文提出了一种改进的灰狼算法。首先,对三维威胁区域进行环境建模,对约束条件规定无人机飞行的总成本函数;其次,在灰狼种群初始化中加入了混沌序列和准反向学习策略,增加了群种多样性以及未知领域的搜索范围,通过对自适应权重因子的改进来更新个体位置,从而加快收敛速度;最后,为了避免陷入局部最优,引入了粒子群算法从而平衡全局开发与局部收敛。通过实验结果表明,相较于另外3种典型路径规划算法,改进灰狼算法可以寻找出一条安全可行的路径,并且有着较稳定的寻优能力。 展开更多
关键词 无人机 三维路径规划 混沌序列 准反向学习 灰狼算法 粒子群算法
在线阅读 下载PDF
基于非支配排序遗传算法NSGA-Ⅲ的多目标屏蔽智能优化研究 被引量:1
12
作者 王梦琪 郑征 +3 位作者 梅其良 彭超 高静 周岩 《原子能科学技术》 北大核心 2025年第2期422-428,共7页
本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化... 本文基于第3代非支配排序遗传算法(NSGA-Ⅲ)开展了多目标屏蔽智能优化方法研究。以乏燃料运输船舶为对象,采用多目标智能优化程序建立一维离散纵标计算模型,针对舱盖上方区域屏蔽结构(混凝土和聚乙烯厚度)进行优化设计,最终得到1组优化的屏蔽方案。基于优化后的屏蔽方案,建立真实的三维蒙特卡罗计算模型,和基于混凝土、聚乙烯或含硼硅树脂的方案进行对比,评估优化方案的屏蔽效果。评价指标包括屏蔽厚度、重量、总剂量率和价格等。结果显示,基于所开发的多目标屏蔽智能优化方法优化得到的方案各有特点,包含了多个优选的方案,为设计者提供了更丰富的选择。 展开更多
关键词 多目标优化算法 屏蔽 乏燃料运输船舶 第3代非支配排序遗传算法
在线阅读 下载PDF
基于ARIMA算法的玉米籽粒储藏温度预测研究 被引量:1
13
作者 陈思羽 徐爱迪 +3 位作者 刘春山 王淑铭 马浏轩 韩雪双 《农机化研究》 北大核心 2025年第9期171-177,186,共8页
外界环境变化对粮堆内部温度的影响较大,针对夏季温度高、湿度大、易发生腐烂霉变的特点,利用夏季高温试验周期内储粮仓各层的温度数据,基于ARIMA算法进行玉米籽粒储藏短期温度预测。利用差分法、ACF图、PACF图确定模型中d、p、q等参数... 外界环境变化对粮堆内部温度的影响较大,针对夏季温度高、湿度大、易发生腐烂霉变的特点,利用夏季高温试验周期内储粮仓各层的温度数据,基于ARIMA算法进行玉米籽粒储藏短期温度预测。利用差分法、ACF图、PACF图确定模型中d、p、q等参数,依据确定的温度预测模型对未来7 d仓内各粮层的温度进行预测,并将预测值与试验值进行对比,通过绝对误差MAE、相对误差MSE评价指标对模型进行评估,结果表明:第1层模型预测值与实际值的绝对误差MAE的平均值为2.96℃,相对误差MSE的平均值为11.37%;第2层模型预测值与实际值的绝对误差MAE的平均值为0.5℃,相对误差MSE的平均值为1.80%;第3层模型预测值与实际值的绝对误差MAE的平均值为0.57℃,相对误差MSE的平均值为1.91%;第4层模型预测值与实际值的绝对误差MAE的平均值为0.28℃,相对误差MSE的平均值为1.02%,各层相对误差均控制在16%以内。试验结果表明建立的ARIMA温度预测模型较适合玉米籽粒储藏短期温度预测,为保障储粮品质提供了理论依据。 展开更多
关键词 玉米籽粒 储藏 ARIMA算法 温度预测
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:4
14
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
基于改进D^(*)Lite算法的疏散路径规划方法研究 被引量:1
15
作者 李墨潇 张建辉 +4 位作者 王晟旻 冯谦 张斌 邱绍峰 耿明 《中国安全生产科学技术》 北大核心 2025年第3期42-49,共8页
为应对应急疏散中大面积路网结构的路径规划问题,提出1种改进D^(*)Lite算法的疏散路径规划方法。首先,根据不同邻域结构的路网特点,采用多邻域网络流遍历方法;其次,为解决算法在路网结构的独头或环形路段中无法继续搜索的问题,提出1种... 为应对应急疏散中大面积路网结构的路径规划问题,提出1种改进D^(*)Lite算法的疏散路径规划方法。首先,根据不同邻域结构的路网特点,采用多邻域网络流遍历方法;其次,为解决算法在路网结构的独头或环形路段中无法继续搜索的问题,提出1种双层搜索的方式;此外,基于路径坡度变化,优化算法的代价计算方式;最后,为检验改进D^(*)Lite算法的路径规划能力,探讨区域危险发生、区域危险新增和区域恢复3种情景下的路径变化,研究D^(*)Lite算法在考虑路径坡度情况下的避险能力。研究结果表明:改进后的算法能够根据危险情况的变化调整路径,且考虑路径坡度能够获得更为准确的疏散时间。研究结果可为应急疏散工作提供指导。 展开更多
关键词 路径规划 应急疏散 改进算法 路径坡度
在线阅读 下载PDF
基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测 被引量:4
16
作者 姜香菊 王瑞彤 马彦鸿 《电工技术学报》 北大核心 2025年第3期842-854,共13页
随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量... 随着新型电力系统的不断发展建设,输电线路绝缘子状态智能化巡检成为必然趋势。为方便“云-边-端协同架构”进行边缘部署,该文提出一种轻量级RT-DETR目标检测算法。首先,采用RT-DETR作为基线算法降低优化难度,提高鲁棒性;其次,选择轻量级EMO作为算法特征提取主干,充分学习绝缘子目标的长距离特征交互及缺陷小目标的局部特征交互,并提出基于轻量级注意力的尺度内特征交互模块和轻量级跨尺度特征融合模块设计轻量级高效混合编码器;再次,在轻量级高效混合编码器中引入定位信息补充分支、使用DIoU损失函数结合迁移学习训练技巧,缓解轻量化造成的算法精度下降问题;最后,构建多天气条件绝缘子数据集进行训练验证。实验结果表明,相较于基线算法,所提算法检测精度达到97.2%,只损失0.7个百分点,而参数量和计算量分别下降67.8%和71.2%,检测速度提升2.5倍,满足多天气条件下的输电线路绝缘子状态巡检准确率及边缘部署轻量化要求。 展开更多
关键词 绝缘子缺陷检测 RT-DETR算法 轻量化 边缘部署 目标检测算法
在线阅读 下载PDF
社交媒体用户参与算法风险治理的影响因素研究 被引量:3
17
作者 孟玺 李庆霜 霍帆帆 《现代情报》 北大核心 2025年第5期49-65,共17页
[目的/意义]探讨社交媒体用户参与算法风险治理的影响因素,有助于提升我国算法风险治理效果,完善多元共治的算法治理体系。[方法/过程]基于刺激—机体—反应(SOR)模型框架,整合社会认知理论和感知价值理论,根据2 313份问卷调查数据开展... [目的/意义]探讨社交媒体用户参与算法风险治理的影响因素,有助于提升我国算法风险治理效果,完善多元共治的算法治理体系。[方法/过程]基于刺激—机体—反应(SOR)模型框架,整合社会认知理论和感知价值理论,根据2 313份问卷调查数据开展实证研究。[结果/结论]研究结果表明,在总效应模型中,算法素养、政府规制与平台算法责任正向显著影响用户参与治理意愿,政府规制是影响最大的刺激因素。加入感知收益和感知风险中介变量后,算法素养、平台算法责任通过感知收益与感知风险的部分中介作用对用户参与治理意愿产生间接影响;政府规制通过感知收益与感知风险的完全中介作用对用户参与治理意愿产生间接影响。研究发现,感知收益的中介作用比感知风险更加显著。研究结论为完善我国算法风险治理体系提供了理论参考,对激励用户参与以实现算法风险多元协同共治具有积极的实践指导意义。 展开更多
关键词 算法素养 政府规制 平台算法责任 用户参与 风险治理
在线阅读 下载PDF
融合多策略的改进鹈鹕优化算法 被引量:1
18
作者 李智杰 赵铁柱 +3 位作者 李昌华 介军 石昊琦 杨辉 《控制工程》 北大核心 2025年第7期1184-1197,1206,共15页
针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反... 针对鹈鹕优化算法在寻优过程中存在的种群多样性降低、收敛速度下降、易陷入局部最优等问题,融合多种策略对其进行改进,提出了改进鹈鹕优化算法(improved pelican optimization algorithm,IPOA)。首先,利用帐篷(tent)混沌映射和折射反向学习策略初始化鹈鹕种群,在增加种群多样性的同时为算法寻优能力的提升打下基础;然后,在鹈鹕逼近猎物阶段引入非线性惯性权重因子以提高算法的收敛速度;最后,引入樽海鞘群算法的领导者策略以协调算法的全局搜索能力和局部寻优能力。实验测试了单一改进策略的改进效果,并将IPOA与其他9种优化算法进行了对比。实验结果证明了各改进策略的有效性和IPOA的优越性和鲁棒性。 展开更多
关键词 鹈鹕优化算法 帐篷混沌映射 折射反向学习 非线性惯性权重因子 樽海鞘群算法
在线阅读 下载PDF
基于PID搜索优化的CNN-LSTM-Attention铝电解槽电解温度预测方法研究 被引量:3
19
作者 尹刚 朱淼 +2 位作者 全鹏程 颜玥涵 刘期烈 《仪器仪表学报》 北大核心 2025年第1期324-337,共14页
铝电解生产环境恶劣,受电场、磁场、流场、温度场等多物理场耦合影响,导致铝电解生产过程故障频发。铝电解温度是影响铝电解槽寿命和运行状态的重要参数,但由于槽内温度很高且具有强烈腐蚀性,至今尚未找到有效的电解温度在线检测与预测... 铝电解生产环境恶劣,受电场、磁场、流场、温度场等多物理场耦合影响,导致铝电解生产过程故障频发。铝电解温度是影响铝电解槽寿命和运行状态的重要参数,但由于槽内温度很高且具有强烈腐蚀性,至今尚未找到有效的电解温度在线检测与预测方法。为了解决这一技术难题,通过理论分析结合现场实验验证,揭示了铝电解槽电解温度与其工艺参数间的密切相关性,并据此提出一种基于深度学习的铝电解槽电解温度预测模型。考虑到铝电解槽工艺参数的复杂性、非线性、高维度、时序性等特征,采用卷积神经网络(CNN)用于提取数据的高维特征,长短期记忆网络用于建模(LSTM),处理铝电解生产过程中的时序数据,引入了注意力机制(Attention),学习输入参数不同部分之间的关联性,同时根据输入数据的重要程度进行加权处理,并采用PID搜索优化算法(PSA)对CNN-LSTM-Attention模型的参数进行寻优,减少训练时间并提高模型的性能。最后经铝电解实际生产数据进行现场实验验证,结果表明:提出的温度预测模型相关指数(R~2)为0.963 7,均方根误差(RMSE)和平均绝对误差(MAE)分别为5.417 6和3.382 5,与单一模型算法、其他预测算法和不同优化算法对比验证表明,该模型的性能更佳,能够准确预测铝电解槽电解温度,实现了铝电解槽电解温度的在线检测。 展开更多
关键词 铝电解 算法 电解温度 深度学习 过程控制
在线阅读 下载PDF
算法推荐服务提供者注意义务新解——以特殊审查义务为中心 被引量:3
20
作者 马一德 赵迪雅 《知识产权》 北大核心 2025年第2期3-23,共21页
我国司法实践对算法推荐服务提供者注意义务的讨论缺乏体系定位与层次分析。我国网络服务提供者注意义务体系并非单一结构,而是由被动审查义务、特殊审查义务组成。是否突破现有体系为算法推荐服务提供者规定更高的注意义务,需回归该体... 我国司法实践对算法推荐服务提供者注意义务的讨论缺乏体系定位与层次分析。我国网络服务提供者注意义务体系并非单一结构,而是由被动审查义务、特殊审查义务组成。是否突破现有体系为算法推荐服务提供者规定更高的注意义务,需回归该体系逐一分析。算法推荐的伪中立性,无法适用被动审查义务,而全面审查义务又与三方主体的权利保护冲突。算法推荐服务提供者承担特殊审查义务的理由不在于,算法推荐技术与信息管理能力存在正相关的假设,而在于我国网络服务提供者的角色转型,且特殊审查义务的风险防控内涵与算法推荐诱发的侵权风险相契合。在个案中,需结合算法推荐服务提供者规模、被推荐作品属性、推荐行为应用场景,考量其特殊审查义务。 展开更多
关键词 算法推荐 算法推荐服务提供者 注意义务 特殊审查义务
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部