锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电...锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。展开更多
合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影...合理规划好集中供热一次网的供热负荷,对满足热用户的舒适度和减少能源消耗有着重要意义。为此提出一种改进金豺算法(improved golden jackal optimization,IGJO)优化的CNN-BiLSTM热负荷预测模型。综合考虑一次网各项参数和天气因素的影响,将热负荷历史值和一次网供水温度、供水流量、供水压力、外界天气温度组成CNN-BiLSTM网络的输入,利用CNN-BiLSTM网络提取输入数据的空间特征和时间特征。同时,通过Circle混沌映射、螺旋波动搜索、自适应t变异策略改进GJO,得到的IGJO有效解决了GJO全局搜索能力弱和收敛精度不高的问题,具有高效的寻优效果,然后利用IGJO寻优CNN-BiLSTM网络的超参数,解决了因CNN-BiLSTM网络的超参数选取不当而影响热负荷预测结果的问题。最后利用吉林延边某换热站2021年1月到3月供热负荷数据进行模型测试。结果表明,所提IGJO-CNN-BiLSTM预测结果的MAE、MAPE、RMSE和NSE分别为0.005 MW、0.33%、0.008 MW和0.97,相比LSTM、CNN-LSTM等模型,具有更优的预测精度。展开更多
文摘锂电池的荷电状态(state of charge,SOC)是电池管理系统的重要参数,但其与电池内部复杂的电化学特性高度关联,无法直接测量。近年来,基于数据驱动的方法在SOC估计领域展现了极大的潜力,然而其对输入数据的精确性有较高要求。磷酸铁锂电池因存在电压平台问题,其电压波动和噪声会严重影响SOC估计的精度,本文针对这一问题,通过实验和数据驱动结合的方法,引入电池膨胀力作为新的输入维度,融合电池的电化学特性与机械特性,有效补偿了电压平台问题对SOC估计结果的影响。本研究在4种环境温度和2种动态电流测试工况下进行了实验,利用所得数据对神经网络模型进行训练和测试,以评估SOC估计精度并验证本方法的可行性和普适性。此外,本文还提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,Bi-LSTM)的混合模型,兼顾序列数据的局部模式与长期依赖关系,进一步提升SOC估计的可靠性。结果表明,本文提出的方法可以显著提高磷酸铁锂电池SOC估计精度,相比未引入膨胀力信号,均方根误差(root-mean-square error,RMSE)平均下降了43.82%。同时,CNNBiLSTM模型相比其他常规神经网络模型,RMSE最多降低了53.88%。本研究为高精度SOC估计提供了新的思路,对提升电池管理系统的性能具有重要意义。