基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进...基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进行对比,并选取6个研究区,分析区域的平均土壤湿度时间变化特点。结果表明:Noah-MP模式能够很好地模拟出中国区域0~10 cm土壤湿度空间分布,模拟值和观测值均呈现由西北向东南和西南地区递增的趋势;从全国尺度来看,模拟值与观测值非常接近,相关系数大于0.9,均方根误差为0.008 m3/m3;从区域尺度看,Noah-MP能够很好地模拟出各研究区土壤湿度的时间变化,但是对于冻土融化时东北地区的土壤湿度存在轻微的低估。基于CLDAS2.0驱动数据得到的土壤湿度模拟结果具有较高准确性,可为农业干旱研究提供一定参考。展开更多
为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP...为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明:GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。展开更多
文章利用重力恢复与气候实验卫星(Gravity Recovery and Climate Experiment,GRACE)时变重力场球谐系数文件,联合全球陆面数据同化系统(Global Land Data Assimilation System,GLDAS)水文模型反演安徽省2003—2016年地下水储量的时空变...文章利用重力恢复与气候实验卫星(Gravity Recovery and Climate Experiment,GRACE)时变重力场球谐系数文件,联合全球陆面数据同化系统(Global Land Data Assimilation System,GLDAS)水文模型反演安徽省2003—2016年地下水储量的时空变化。通过奇异谱分析(Singular Spectrum Analysis,SSA)地下水时间序列,结合热带降雨测量任务(Tropical Rainfall Measuring Mission,TRMM)降雨数据对地下水储量变化规律进行分析。结果表明,安徽省地下水储量在2011年和2014年前后发生较大变化,在2003—2011年的变化率为0.37 cm/a,2011—2014年的下降速率为-0.2 cm/a,2014—2016年的增长速率为1.9 cm/a;进一步与降雨数据关联,发现降雨量是影响安徽省地下水储量年际变化和季节性变化的主要因素。在空间上,安徽省呈现自东北向西南逐渐缓和的趋势,最大亏损出现在皖北地区,为-7.52 mm/a,在西南地区的最大盈余达到8.38 mm/a。展开更多
文摘基于高时空分辨率的中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)2.0版本的大气驱动数据,使用Noah-MP陆面模式模拟中国区域2013—2014年土壤湿度的时空变化,将模拟结果与自动土壤水分观测站的逐小时观测值进行对比,并选取6个研究区,分析区域的平均土壤湿度时间变化特点。结果表明:Noah-MP模式能够很好地模拟出中国区域0~10 cm土壤湿度空间分布,模拟值和观测值均呈现由西北向东南和西南地区递增的趋势;从全国尺度来看,模拟值与观测值非常接近,相关系数大于0.9,均方根误差为0.008 m3/m3;从区域尺度看,Noah-MP能够很好地模拟出各研究区土壤湿度的时间变化,但是对于冻土融化时东北地区的土壤湿度存在轻微的低估。基于CLDAS2.0驱动数据得到的土壤湿度模拟结果具有较高准确性,可为农业干旱研究提供一定参考。
文摘为研究不同陆面模式对中国区域土壤温度的模拟效果,基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)大气驱动数据分别驱动Noah和Noah-MP陆面模式进行中国区域土壤温度的模拟(简称:CLDAS_Noah和CLDAS_Noah-MP试验),使用2010—2018年中国气象局2380个土壤温度观测站点10和40 cm观测数据以及美国全球陆面数据同化系统(The Global Land Data Assimilation System,GLDAS)驱动的Noah模式(GLDAS_Noah试验)模拟的土壤温度结果,从空间分布、季节、分区等角度进行了评估,实现了不同驱动数据相同陆面模式和相同驱动数据不同陆面模式的对比分析。结果表明:GLDAS_Noah、CLDAS_Noah和CLDAS_Noah-MP试验均能合理模拟出中国区域土壤温度空间分布,但在量级上有一定差异,主要表现在中国东北、新疆、青藏高原等积雪区。对于相同陆面模式不同驱动数据,均方根误差显示CLDAS_Noah试验在季节与分区上均优于GLDAS_Noah试验,间接表明CLDAS大气驱动数据优于GLDAS大气驱动数据,且大气驱动数据是提高土壤温度模拟精度的重要因素之一;对于相同驱动数据不同陆面模式,总体上CLDAS_Noah-MP试验棋拟效果优于CLDAS_Noah试验,其中CLDAS_Noah试验模拟的10和40 cm深度土壤温度在冬季积雪区误差明显大于CLDAS_Noah-MP试验,可能与Noah-MP模式改进了积雪方案有关,但10和40 cm深度下CLDAS_Noah-MP试验在东北、华北、青藏高原地区对春季土壤温度模拟误差明显大于CLDAS_Noah试验,可能与Noah-MP模式融雪方案有关。总之,本研究对于后续开展土壤温度多模式集成、土壤温度站点资料同化,最终研制中国区域高质量土壤温度数据集具有一定的参考意义。