Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding app...Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.展开更多
Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recover...Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.展开更多
According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in...According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.展开更多
The plasma status of vacuum arc before arc current zero,has a great influence on the interruption performance of the vacuum circuit breakers.In this paper,a vacuum arc model in a short gap was established based on the...The plasma status of vacuum arc before arc current zero,has a great influence on the interruption performance of the vacuum circuit breakers.In this paper,a vacuum arc model in a short gap was established based on the magnet hydrodynamic(MHD) and a common computational fluid dynamics(CFD) software was utilized to specially investigate the properties of this arc.The spatial distributions of plasma pressure,plasma density,ion axial velocity, and axial current density in front of the anode surface of vacuum arc in this case were obtained.Simulation results indicate that:from the cathode to the anode,both of the plasma pressure and the plasma density increase gradually,and the plasma axial velocity decreases gradually;the axial current density in front of anode has a large radial gradient, and the maximum value is still smaller than the threshold current density for the anode-spot formation,thus,the anode is still passive.The comparison between the plasma density of simulation and the CMOS images taken by the high-speed camera indicates that they are in reasonable agreement with each other and demonstrates the feasibility of the vacuum arc model.展开更多
As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was...As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.展开更多
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
Accurately evaluating the aerodynamic performance of a battle-structure-damaged aircraft is essential to enable the pilot to optimize the flight control strategy. Based on CFD and rigid dynamic mesh techniques,a numer...Accurately evaluating the aerodynamic performance of a battle-structure-damaged aircraft is essential to enable the pilot to optimize the flight control strategy. Based on CFD and rigid dynamic mesh techniques,a numerical method is developed to calculate the longitudinal and longitudinal-lateral coupling forces and moments with small amplitude sinusoidal pitch oscillation, and the corresponding dynamic derivatives of two fragment-structure-damaged and two continuous-rod-damaged models modified from the SACCON UAV. The results indicate that, at the reference point set in this paper, additional positive damping is generated in fragment-damaged configurations;thus, the absolute values of the negative pitch dynamic derivative increase. The missing wingtip induces negative pitch damping on the aircraft and decreases the value of the pitch dynamic derivative. The missing middle wing causes a noticeable increase in the absolute value of the pitch dynamic derivative;the missing parts on the right wing cause the aircraft to roll to the right side in the dynamic process, and the pitch-roll coupling cross dynamic derivatives are positive. Moreover, the values of these derivatives increase as the damaged area on the right wing increases, and an optimal case with the smallest cross dynamic derivative can be found to help improve the survivability of damaged aircraft.展开更多
Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are...Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.展开更多
Prevailing ambient wind is the main reason thatcauses inlet flow rate(air mass flow rate)decreasingand air flowing backward to the air-cooled condenserfans upward to the wind,hence a set of wind guidingnets is designe...Prevailing ambient wind is the main reason thatcauses inlet flow rate(air mass flow rate)decreasingand air flowing backward to the air-cooled condenserfans upward to the wind,hence a set of wind guidingnets is designed to improve the detrimental effect.Fig.1 shows four typical units of a 1000MW directair-cooled condenser(DACC)and a set of windguiding nets installed under its edge upward to theambient wind.As shown in Fig.2,the fan inlet flowrate decreases as the prevailing ambient wind velocityincreasing,especially for the first two units upward tothe wind.展开更多
文摘Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.
基金Project supported by Grant-in-Aid for Scientific Research (JSPS KAKENHI for Young Scientists (S), 21676005)
文摘Thermal comfort and indoor air quality as well as the energy efficiency have been recognized as essential parts of sustainable building assessment. This work aims to analyze the energy conservation of the heat recovery ventilator and to investigate the effect of the air supply arrangement. Three types of mixing ventilation are chosen for the analysis of coupling ANSYS/FLUENT (a computational fluid dynamics (CFD) program) with TRNSYS (a building energy simulation (BES) software). The adoption of mutual complementary boundary conditions for CFD and BES provides more accurate and complete information of indoor air distribution and thermal performance in buildings. A typical office-space situated in a middle storey is chosen for the analysis. The office-space is equipped with air-conditioners on the ceiling. A heat recovery ventilation system directly supplies flesh air to the office space. Its thermal performance and indoor air distribution predicted by the coupled method are compared under three types of ventilation system. When the supply and return openings for ventilation are arranged on the ceiling, there is no critical difference between the predictions of the coupled method and BES on the energy consumption of HVAC because PID control is adopted for the supply air temperature of the occupied zone. On the other hand, approximately 21% discrepancy for the heat recovery estimation in the maximum between the simulated results of coupled method and BES-only can be obviously found in the floor air supply ventilation case. The discrepancy emphasizes the necessity of coupling CFD with BES when vertical air temperature gradient exists. Our future target is to estimate the optimum design of heat recovery ventilation system to control CO2 concentration by adjusting flow rate of flesh air.
基金Project(51074027)supported by the National Natural Science Foundation of China
文摘According to the recently developed single-trough floating machine with the world's largest volume(inflatable mechanical agitation flotation machine with volume of 320 m3) in China, the gas-fluid two-phase flow in flotation cell was simulated using computational fluid dynamics method. It is shown that hexahedral mesh scheme is more suitable for the complex structure of the flotation cell than tetrahedral mesh scheme, and a mesh quality ranging from 0.7 to 1.0 is obtained. Comparative studies of the standard k-ε, k-ω and realizable k-ε turbulence models were carried out. It is indicated that the standard k-ε turbulence model could give a result relatively close to the practice and the liquid phase flow field is well characterized. In addition, two obvious recirculation zones are formed in the mixing zones, and the pressure on the rotor and stator is well characterized. Furthermore, the simulation results using improved standard k-ε turbulence model show that surface tension coefficient of 0.072, drag model of Grace and coefficient of 4, and lift coefficient of 0.001 can be achieved. The research results suggest that gas-fluid two-phase flow in large flotation cell can be well simulated using computational fluid dynamics method.
基金Supported by National Natural Science Foundation of China(50537010,50977004)
文摘The plasma status of vacuum arc before arc current zero,has a great influence on the interruption performance of the vacuum circuit breakers.In this paper,a vacuum arc model in a short gap was established based on the magnet hydrodynamic(MHD) and a common computational fluid dynamics(CFD) software was utilized to specially investigate the properties of this arc.The spatial distributions of plasma pressure,plasma density,ion axial velocity, and axial current density in front of the anode surface of vacuum arc in this case were obtained.Simulation results indicate that:from the cathode to the anode,both of the plasma pressure and the plasma density increase gradually,and the plasma axial velocity decreases gradually;the axial current density in front of anode has a large radial gradient, and the maximum value is still smaller than the threshold current density for the anode-spot formation,thus,the anode is still passive.The comparison between the plasma density of simulation and the CMOS images taken by the high-speed camera indicates that they are in reasonable agreement with each other and demonstrates the feasibility of the vacuum arc model.
基金Projects(51475464,51175500) supported by the National Natural Science Foundation of China
文摘As potential alternative power sources used in portable electric generators, opposite axial piston engines in small-scale were investigated to show their advantages in power density. A novel cylinder charge system was introduced, based on which a quasi-dimension model and a CFD(computational fluid dynamics) model were established. Comparison of those two models was carried out to validate the quasi-dimension model. Furthermore, optimal diameter of charge cylinder and speed were determined after evaluating the quasi-dimension model based on different parameters. High agreement between the quasi-dimension model and the CFD model validates the quasi-dimension model. Further studies show that the power of engine increases with the diameter of charge cylinder. However, a too big charge cylinder lowers the fuel efficiency instead. Taking economic influence into consideration the charge cylinder should be 1.4 times power cylinder, which could ensure the power density, volumetric efficiency and fuel economic at the same time. Axial piston engine running at 1.0×104 r/min could achieve a better overall performance. The maximal power of engine with optimal parameters is 0.82 k W, which fits the power need of the portable electric generators completely.
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
基金support of National Natural Science Foundation of China (Grant No. 11672236)Project funded by China Postdoctoral Science Foundation (Grant No. 2018M641381)。
文摘Accurately evaluating the aerodynamic performance of a battle-structure-damaged aircraft is essential to enable the pilot to optimize the flight control strategy. Based on CFD and rigid dynamic mesh techniques,a numerical method is developed to calculate the longitudinal and longitudinal-lateral coupling forces and moments with small amplitude sinusoidal pitch oscillation, and the corresponding dynamic derivatives of two fragment-structure-damaged and two continuous-rod-damaged models modified from the SACCON UAV. The results indicate that, at the reference point set in this paper, additional positive damping is generated in fragment-damaged configurations;thus, the absolute values of the negative pitch dynamic derivative increase. The missing wingtip induces negative pitch damping on the aircraft and decreases the value of the pitch dynamic derivative. The missing middle wing causes a noticeable increase in the absolute value of the pitch dynamic derivative;the missing parts on the right wing cause the aircraft to roll to the right side in the dynamic process, and the pitch-roll coupling cross dynamic derivatives are positive. Moreover, the values of these derivatives increase as the damaged area on the right wing increases, and an optimal case with the smallest cross dynamic derivative can be found to help improve the survivability of damaged aircraft.
基金Project(51276213)supported by the National Natural Science Foundation of ChinaProject(2013BAF01B00)supported by the National Science and Technology Support Program of China
文摘Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.
文摘Prevailing ambient wind is the main reason thatcauses inlet flow rate(air mass flow rate)decreasingand air flowing backward to the air-cooled condenserfans upward to the wind,hence a set of wind guidingnets is designed to improve the detrimental effect.Fig.1 shows four typical units of a 1000MW directair-cooled condenser(DACC)and a set of windguiding nets installed under its edge upward to theambient wind.As shown in Fig.2,the fan inlet flowrate decreases as the prevailing ambient wind velocityincreasing,especially for the first two units upward tothe wind.