主要评估了美国国家大气研究中心的NCAR CESM(Community Earth System Model,NCAR)和中国科学院的CAS ESM(Earth System Model,Chinese Academy of Sciences)两个地球系统模式对亚洲东部夏季气候态的模拟性能。使用NCAR CESM和CAS ESM...主要评估了美国国家大气研究中心的NCAR CESM(Community Earth System Model,NCAR)和中国科学院的CAS ESM(Earth System Model,Chinese Academy of Sciences)两个地球系统模式对亚洲东部夏季气候态的模拟性能。使用NCAR CESM和CAS ESM各两种不同的水平分辨率,一共进行了4组长达19年(1998~2016年)的数值积分试验,并通过对2 m气温、降水强度和降水日变化等的分析,比较了这两个模式在亚洲东部的模拟性能。结果表明,CAS ESM和NCAR CESM均能模拟出夏季2 m气温和降水强度的大尺度分布特征,但整体上模拟得到的地表面气温偏暖、降水强度偏弱。对于降水日变化而言,观测的日降水峰值在陆地上主要发生在下午到傍晚时段,在海洋上则出现在午夜到凌晨时段。两组低分辨率试验模拟的陆地降水峰值出现过早,且无法模拟出四川盆地的夜间降水峰值和部分海洋地区凌晨或上午的降水峰值。提高分辨率对模式的模拟性能有显著的提升作用。高分辨率下,NCAR CESM和CAS ESM对陆地和海洋的降水日变化模拟性能都明显提高。对降水日变化的定量化分析表明,高分辨率CAS ESM模式对整个亚洲东部降水日变化的模拟最优。目前模式对海陆风的模拟还不太理想,未来要进一步提高模式模拟性能,需要重点完善与气温、降水过程相关的物理参数化方案。展开更多
热带海表温度(SST)模拟偏差是困扰海气耦合模式发展的经典问题之一,其原因仍不完全清晰。针对海气耦合模式CESM1(Community Earth System Model version 1)模拟的热带印度洋SST偏差,我设计了单独大气-陆面模式、单独海洋-海冰模式以及...热带海表温度(SST)模拟偏差是困扰海气耦合模式发展的经典问题之一,其原因仍不完全清晰。针对海气耦合模式CESM1(Community Earth System Model version 1)模拟的热带印度洋SST偏差,我设计了单独大气-陆面模式、单独海洋-海冰模式以及海气耦合模式等一系列数值实验。在此基础上,采用大气-陆面模式和海洋-海冰模式隐式(implicit)SST偏差的分析方法,诊断了CESM1模拟的热带印度洋SST偏差的来源,并分析了大气模式和海洋模式中影响热带印度洋上层海温模拟的主要因素。通过分析热带印度洋不同地区SST的模拟偏差来源,发现耦合模式CESM1中孟加拉湾SST模拟偏冷主要是由海洋-海冰模式中过强的垂直混合、平流作用等海洋动力偏差引起的。在阿拉伯海和赤道西印度洋,过多的潜热释放导致SST降低,大气-陆面模式模拟误差是这两个海域SST冷偏差的主要来源。对于赤道中印度洋,潜热通量偏差和垂直混合、平流作用等模拟误差共同影响上层海水温度,潜热释放偏少、海水垂直混合偏弱以及经向平流向南输送过多暖水使耦合模式模拟的赤道中印度洋SST出现暖偏差,而在赤道东印度洋,模拟的SST偏冷是由大气-陆面模式中短波辐射偏少和海洋-海冰模式中海水垂直混合过强引起的,潜热通量偏差影响较小。分析表明,耦合模式中海气相互作用只影响SST模拟偏差的大小,但不是引起SST偏差的根本原因。展开更多
全球一半以上人口生活在季风区。为了研究温室气候时期全球季风气候的特征,利用耦合气候数值模式(Community Earth System Model),模拟了距今最近的温室气候时期——始新世(40 Ma B.P.)的全球季风气候特征。该模式全面考虑了大气、海洋...全球一半以上人口生活在季风区。为了研究温室气候时期全球季风气候的特征,利用耦合气候数值模式(Community Earth System Model),模拟了距今最近的温室气候时期——始新世(40 Ma B.P.)的全球季风气候特征。该模式全面考虑了大气、海洋、陆地、陆冰、海冰、植被等气候子系统的耦合作用,大气CO2含量设为工业革命前的4倍。模拟结果表明,在始新世时期,全球季风的范围、强度与现今大体相当,但是区域上,各季风区的特征与现今有明显差异。展开更多
文摘主要评估了美国国家大气研究中心的NCAR CESM(Community Earth System Model,NCAR)和中国科学院的CAS ESM(Earth System Model,Chinese Academy of Sciences)两个地球系统模式对亚洲东部夏季气候态的模拟性能。使用NCAR CESM和CAS ESM各两种不同的水平分辨率,一共进行了4组长达19年(1998~2016年)的数值积分试验,并通过对2 m气温、降水强度和降水日变化等的分析,比较了这两个模式在亚洲东部的模拟性能。结果表明,CAS ESM和NCAR CESM均能模拟出夏季2 m气温和降水强度的大尺度分布特征,但整体上模拟得到的地表面气温偏暖、降水强度偏弱。对于降水日变化而言,观测的日降水峰值在陆地上主要发生在下午到傍晚时段,在海洋上则出现在午夜到凌晨时段。两组低分辨率试验模拟的陆地降水峰值出现过早,且无法模拟出四川盆地的夜间降水峰值和部分海洋地区凌晨或上午的降水峰值。提高分辨率对模式的模拟性能有显著的提升作用。高分辨率下,NCAR CESM和CAS ESM对陆地和海洋的降水日变化模拟性能都明显提高。对降水日变化的定量化分析表明,高分辨率CAS ESM模式对整个亚洲东部降水日变化的模拟最优。目前模式对海陆风的模拟还不太理想,未来要进一步提高模式模拟性能,需要重点完善与气温、降水过程相关的物理参数化方案。
文摘热带海表温度(SST)模拟偏差是困扰海气耦合模式发展的经典问题之一,其原因仍不完全清晰。针对海气耦合模式CESM1(Community Earth System Model version 1)模拟的热带印度洋SST偏差,我设计了单独大气-陆面模式、单独海洋-海冰模式以及海气耦合模式等一系列数值实验。在此基础上,采用大气-陆面模式和海洋-海冰模式隐式(implicit)SST偏差的分析方法,诊断了CESM1模拟的热带印度洋SST偏差的来源,并分析了大气模式和海洋模式中影响热带印度洋上层海温模拟的主要因素。通过分析热带印度洋不同地区SST的模拟偏差来源,发现耦合模式CESM1中孟加拉湾SST模拟偏冷主要是由海洋-海冰模式中过强的垂直混合、平流作用等海洋动力偏差引起的。在阿拉伯海和赤道西印度洋,过多的潜热释放导致SST降低,大气-陆面模式模拟误差是这两个海域SST冷偏差的主要来源。对于赤道中印度洋,潜热通量偏差和垂直混合、平流作用等模拟误差共同影响上层海水温度,潜热释放偏少、海水垂直混合偏弱以及经向平流向南输送过多暖水使耦合模式模拟的赤道中印度洋SST出现暖偏差,而在赤道东印度洋,模拟的SST偏冷是由大气-陆面模式中短波辐射偏少和海洋-海冰模式中海水垂直混合过强引起的,潜热通量偏差影响较小。分析表明,耦合模式中海气相互作用只影响SST模拟偏差的大小,但不是引起SST偏差的根本原因。
文摘全球一半以上人口生活在季风区。为了研究温室气候时期全球季风气候的特征,利用耦合气候数值模式(Community Earth System Model),模拟了距今最近的温室气候时期——始新世(40 Ma B.P.)的全球季风气候特征。该模式全面考虑了大气、海洋、陆地、陆冰、海冰、植被等气候子系统的耦合作用,大气CO2含量设为工业革命前的4倍。模拟结果表明,在始新世时期,全球季风的范围、强度与现今大体相当,但是区域上,各季风区的特征与现今有明显差异。