Two new chiral stationary phases, 2,3 di O acetyl 6 O trimethylsilyl β cyclodextrin (DATBCD) and 2,6 di O trimethylsilyl 3 O acetyl β cyclodextrin(DTABCD), were synthesized, their structures were identified by means...Two new chiral stationary phases, 2,3 di O acetyl 6 O trimethylsilyl β cyclodextrin (DATBCD) and 2,6 di O trimethylsilyl 3 O acetyl β cyclodextrin(DTABCD), were synthesized, their structures were identified by means of infrared and NMR spectra. Capillary columns were coated with the two stationary phases by dynamic method. The chromatographic properties, and enantiomers separation, such as ketone, esters, alcohols and olefines, were investigated on the silylated and acetylated β cyclodextrin stationary phases. The experimental results show that the silylated and acetylated β cyclodextrins are suitable to be used as capillary gas chromatographic stationary phases, the relative polarity of DATBCD and DTABCD stationary phases is respectively 4143 and 3928, the column efficiencies are respectively 3084 and 4198, and DATBCD is of stronger enantioselectivity than DTABCD, capacity factor of the first eluted enantiomer ( k 1) and separation factor(α)of α phenylethanol on DATBCD stationary phase are respectively 8.23 and 1.019.展开更多
Inclusion behavior of oxybutynin (OBN) with hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by ultraviolet absorption spectrum and fluorescence spectrum. A reliable determination of the complex stoichiom...Inclusion behavior of oxybutynin (OBN) with hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by ultraviolet absorption spectrum and fluorescence spectrum. A reliable determination of the complex stoichiometry was provided by the continuous variation technique. Alcohol was added to further investigate the mechanism of the inclusion behavior. Thermodynamic constants AG, AH and AS for inclusion interaction of OBN and HP-β-CD were determined. The results show that host-guest complex with molar ratio of 1:1 is formed, and inclusion stability constant between OBN and HP-β-CD is 54.9 L/mol determined by ultraviolet spectrum and 11.1 L/mol determined by fluorescence spectrum. OBN has weak binding ability with HP-β-CD in aqueous solution (stability constant 〈102 L/mol) and addition of alcohol leads to a decrease of stability constant, which indicates that the hydrophobic force contributes to the inclusion process. AG, AH and AS are all less than zero, which indicates that the inclusion process is a spontaneous and exothermic process.展开更多
The chiral separation of phenylsuccinic acid(PSA)was studied by reversed phase high-performance liquid chromatography(RP-HPLC)with cyclodextrins(CDs)as chiral mobile phase additives.The effects of types of CDs,concent...The chiral separation of phenylsuccinic acid(PSA)was studied by reversed phase high-performance liquid chromatography(RP-HPLC)with cyclodextrins(CDs)as chiral mobile phase additives.The effects of types of CDs,concentration of hydroxypropyl-β-cyclodextrin(HP-β-CD),percentage of organic modifier,pH value and column temperature on enantioselective separation were investigated.The quantification property of the developed RP-HPLC method was examined.The chiral recognition mechanism of PSA was also discussed.The results show that a baseline separation of PSA enantiomers is achieved on a Lichrospher C18 column(4.6 mm(inner diameter)×250 mm,5μm)with HP-β-CD as chiral mobile phase additive.The capacity factors of R-PSA and S-PSA are 3.94 and 4.80,respectively.The separation factor and resolution are respectively 1.22 and 8.03.The mobile phase is a mixture of acetonitrile and deionized water(20-80,volume ratio)containing 10 mmol/L HP-β-CD and 0.05% trifluoroacetic acid(pH 2.5,adjusted with triethylamine)with a flow rate of 1.0 mL/min.The ultraviolet(UV)detector is set at 254 nm.The likely roles are inclusion interaction,induction and hydrogen bonding between HP-β-CD and PSA enantiomers.展开更多
文摘Two new chiral stationary phases, 2,3 di O acetyl 6 O trimethylsilyl β cyclodextrin (DATBCD) and 2,6 di O trimethylsilyl 3 O acetyl β cyclodextrin(DTABCD), were synthesized, their structures were identified by means of infrared and NMR spectra. Capillary columns were coated with the two stationary phases by dynamic method. The chromatographic properties, and enantiomers separation, such as ketone, esters, alcohols and olefines, were investigated on the silylated and acetylated β cyclodextrin stationary phases. The experimental results show that the silylated and acetylated β cyclodextrins are suitable to be used as capillary gas chromatographic stationary phases, the relative polarity of DATBCD and DTABCD stationary phases is respectively 4143 and 3928, the column efficiencies are respectively 3084 and 4198, and DATBCD is of stronger enantioselectivity than DTABCD, capacity factor of the first eluted enantiomer ( k 1) and separation factor(α)of α phenylethanol on DATBCD stationary phase are respectively 8.23 and 1.019.
基金Project(20976041) supported by the National Natural Science Foundation of China
文摘Inclusion behavior of oxybutynin (OBN) with hydroxypropyl-β-cyclodextrin (HP-β-CD) was investigated by ultraviolet absorption spectrum and fluorescence spectrum. A reliable determination of the complex stoichiometry was provided by the continuous variation technique. Alcohol was added to further investigate the mechanism of the inclusion behavior. Thermodynamic constants AG, AH and AS for inclusion interaction of OBN and HP-β-CD were determined. The results show that host-guest complex with molar ratio of 1:1 is formed, and inclusion stability constant between OBN and HP-β-CD is 54.9 L/mol determined by ultraviolet spectrum and 11.1 L/mol determined by fluorescence spectrum. OBN has weak binding ability with HP-β-CD in aqueous solution (stability constant 〈102 L/mol) and addition of alcohol leads to a decrease of stability constant, which indicates that the hydrophobic force contributes to the inclusion process. AG, AH and AS are all less than zero, which indicates that the inclusion process is a spontaneous and exothermic process.
基金Project(20776038)supported by the National Natural Science Foundation of China
文摘The chiral separation of phenylsuccinic acid(PSA)was studied by reversed phase high-performance liquid chromatography(RP-HPLC)with cyclodextrins(CDs)as chiral mobile phase additives.The effects of types of CDs,concentration of hydroxypropyl-β-cyclodextrin(HP-β-CD),percentage of organic modifier,pH value and column temperature on enantioselective separation were investigated.The quantification property of the developed RP-HPLC method was examined.The chiral recognition mechanism of PSA was also discussed.The results show that a baseline separation of PSA enantiomers is achieved on a Lichrospher C18 column(4.6 mm(inner diameter)×250 mm,5μm)with HP-β-CD as chiral mobile phase additive.The capacity factors of R-PSA and S-PSA are 3.94 and 4.80,respectively.The separation factor and resolution are respectively 1.22 and 8.03.The mobile phase is a mixture of acetonitrile and deionized water(20-80,volume ratio)containing 10 mmol/L HP-β-CD and 0.05% trifluoroacetic acid(pH 2.5,adjusted with triethylamine)with a flow rate of 1.0 mL/min.The ultraviolet(UV)detector is set at 254 nm.The likely roles are inclusion interaction,induction and hydrogen bonding between HP-β-CD and PSA enantiomers.