期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于稀疏表示和词袋模型的高光谱图像分类 被引量:4
1
作者 任越美 张艳宁 +1 位作者 魏巍 张秀伟 《计算机科学》 CSCD 北大核心 2014年第10期113-116,共4页
为增强高光谱图像稀疏表示分类方法中稀疏字典的表征能力并充分利用高光谱图像的光谱信息和空间信息,提出了一种新的基于稀疏表示和词袋模型的高光谱遥感图像分类方法。首先利用词袋模型算法结合高光谱遥感图像数据集生成各类别专业码本... 为增强高光谱图像稀疏表示分类方法中稀疏字典的表征能力并充分利用高光谱图像的光谱信息和空间信息,提出了一种新的基于稀疏表示和词袋模型的高光谱遥感图像分类方法。首先利用词袋模型算法结合高光谱遥感图像数据集生成各类别专业码本,作为字典中对应的原子构造稀疏表示字典。在计算每个像元的对应稀疏表示字典中的稀疏表示特征时,利用空间连续性约束对像元的稀疏表示系数进行空间维的约束。最后根据最小重构误差实现高光谱图像分类。高光谱遥感数据实验结果表明:所提方法能有效提高分类效果,并且其分类精度和Kappa系数都优于其他稀疏表示方法以及单独使用光谱信息的方法。 展开更多
关键词 图像处理 高光谱图像 稀疏表示 模型 空间连续
在线阅读 下载PDF
中文领域情感词典自适应学习方法 被引量:17
2
作者 叶霞 曹军博 +2 位作者 许飞翔 郭鸿燕 尹列东 《计算机工程与设计》 北大核心 2020年第8期2231-2237,共7页
针对领域情感词典的局限性,提出一种中文领域情感词典自适应学习方法。从中文基础情感词典中选取少量种子词,采用基于CBOW模型和基于句法规则两种抽取方法,对领域语料库进行候选情感词的抽取,通过改进的SO_PMI算法对得到的候选情感词进... 针对领域情感词典的局限性,提出一种中文领域情感词典自适应学习方法。从中文基础情感词典中选取少量种子词,采用基于CBOW模型和基于句法规则两种抽取方法,对领域语料库进行候选情感词的抽取,通过改进的SO_PMI算法对得到的候选情感词进行情感极性判定,形成领域正负情感词典。实验结果表明,该方法能够自适应生成领域情感词典,情感词识别准确率较高,该模型在中文情感分析应用中取得了较好的效果。 展开更多
关键词 情感分析 领域情感 情感极性 cbow连续词袋模型 PMI算法
在线阅读 下载PDF
融合语义特征和知识特征的推荐模型 被引量:3
3
作者 郑光 朱越 +2 位作者 时雷 马新明 席磊 《计算机工程与设计》 北大核心 2023年第8期2506-2515,共10页
针对传统推荐模型面临的数据稀疏性问题,提出一种基于结合注意力机制的门控循环单元的融合语义和知识特征的推荐模型。基于知识图谱,使用连续词袋模型捕获项目实体对应的语义特征,依据“偏好扩散”思想进行知识特征的学习,将不同层面特... 针对传统推荐模型面临的数据稀疏性问题,提出一种基于结合注意力机制的门控循环单元的融合语义和知识特征的推荐模型。基于知识图谱,使用连续词袋模型捕获项目实体对应的语义特征,依据“偏好扩散”思想进行知识特征的学习,将不同层面特征进行融合后,使用结合注意力机制的门控循环单元挖掘用户潜在兴趣偏好。基于MovieLens数据集的对比实验结果表明,所提模型能够有效提升推荐效果并缓解数据稀疏性问题,通过消融实验验证了该模型各个组件的有效性。 展开更多
关键词 推荐模型 知识图谱 特征融合 门控循环单元 注意力机制 语义特征 连续
在线阅读 下载PDF
基于改进的CBOW与ABiGRU的文本分类研究 被引量:7
4
作者 张宇艺 左亚尧 陈小帮 《计算机工程与应用》 CSCD 北大核心 2019年第24期135-140,170,共7页
文本的表示与文本的特征提取是文本分类需要解决的核心问题,基于此,提出了基于改进的连续词袋模型(CBOW)与ABiGRU的文本分类模型。该分类模型把改进的CBOW模型所训练的词向量作为词嵌入层,然后经过卷积神经网络的卷积层和池化层,以及结... 文本的表示与文本的特征提取是文本分类需要解决的核心问题,基于此,提出了基于改进的连续词袋模型(CBOW)与ABiGRU的文本分类模型。该分类模型把改进的CBOW模型所训练的词向量作为词嵌入层,然后经过卷积神经网络的卷积层和池化层,以及结合了注意力(Attention)机制的双向门限循环单元(BiGRU)神经网络充分提取了文本的特征。将文本特征向量输入到softmax分类器进行分类。在三个语料集中进行的文本分类实验结果表明,相较于其他文本分类算法,提出的方法有更优越的性能。 展开更多
关键词 深度学习 连续模型(cbow) 注意力机制 神经网络 文本分类
在线阅读 下载PDF
基于笔画中文字向量模型设计与研究 被引量:14
5
作者 赵浩新 俞敬松 林杰 《中文信息学报》 CSCD 北大核心 2019年第5期17-23,共7页
中文汉字在横向、纵向展开具有二维的复杂结构。现有的中文词向量研究大都止步于汉字字符,没有利用中文笔画序列生成字向量,且受限于统计模型本质,无法为低频、未登录字词生成高质量向量表示。为此,该文提出了一种依靠中文笔画序列生成... 中文汉字在横向、纵向展开具有二维的复杂结构。现有的中文词向量研究大都止步于汉字字符,没有利用中文笔画序列生成字向量,且受限于统计模型本质,无法为低频、未登录字词生成高质量向量表示。为此,该文提出了一种依靠中文笔画序列生成字向量的模型Stroke2Vec,扩展Word2Vec模型CBOW结构,使用卷积神经网络替换上下文信息矩阵、词向量矩阵,引入注意力机制,旨在模拟笔画构造汉字的规律,通过笔画直接生成字向量。将Stroke2Vec模型与Word2Vec、GloVe模型在命名实体识别任务上进行评测对比。实验结果显示,Stroke2Vec模型F1值达到81.49%,优于Word2Vec 1.21%,略优于GloVe模型0.21%,而Stroke2Vec产生的字向量结合Word2Vec模型结果,在NER上F1值为81.55%。 展开更多
关键词 字向量 笔画 连续模型
在线阅读 下载PDF
一种采用对抗学习的跨项目缺陷预测方法 被引量:6
6
作者 邢颖 钱晓萌 +3 位作者 管宇 章世豪 赵梦赐 林婉婷 《软件学报》 EI CSCD 北大核心 2022年第6期2097-2112,共16页
跨项目缺陷预测(cross-project defect prediction, CPDP)已经成为软件工程数据挖掘领域的一个重要研究方向,它利用其他项目的缺陷代码来建立预测模型,解决了模型构建过程中的数据不足问题.然而源项目和目标项目的代码文件之间存在着数... 跨项目缺陷预测(cross-project defect prediction, CPDP)已经成为软件工程数据挖掘领域的一个重要研究方向,它利用其他项目的缺陷代码来建立预测模型,解决了模型构建过程中的数据不足问题.然而源项目和目标项目的代码文件之间存在着数据分布的差异,导致跨项目预测效果不佳.基于生成式对抗网络(generative adversarial network,GAN)中的对抗学习思想,在鉴别器的作用下,通过改变目标项目特征的分布,使其接近于源项目特征的分布,从而提升跨项目缺陷预测的性能.具体来说,提出的抽象连续生成式对抗网络(abstract continuous generative adversarial network, AC-GAN)方法包括数据处理和模型构建两个阶段:(1)首先将源项目和目标项目的代码转换为抽象语法树(abstract syntax tree,AST)的形式,然后以深度优先方式遍历抽象语法树得出节点序列,再使用连续词袋模型(continuous bag-of-words model,CBOW)生成词向量,依据词向量表将节点序列转化为数值向量;(2)处理后的数值向量被送入基于GAN网络结构的模型进行特征提取和数据迁移,然后使用二分类器来判断目标项目代码文件是否有缺陷. AC-GAN方法在15组源-目标项目对上进行了对比实验,实验结果表明了该方法的有效性. 展开更多
关键词 跨项目缺陷预测 生成式对抗网络 连续模型 抽象语法树
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部