针对静态人群图像中背景干扰和尺度变化等问题,采用多尺度特征提取模块(Res2Net)以更细的粒度提取多尺度特征,提高对不同尺寸人头的计数性能;引入卷积注意力模块(CBAM),分别在通道域和空间域上提高人群区域的权重,有效改善了高密度和复...针对静态人群图像中背景干扰和尺度变化等问题,采用多尺度特征提取模块(Res2Net)以更细的粒度提取多尺度特征,提高对不同尺寸人头的计数性能;引入卷积注意力模块(CBAM),分别在通道域和空间域上提高人群区域的权重,有效改善了高密度和复杂的人群场景下背景干扰等问题。在此基础上,将CBAM模块集成到Res2Net模块中,形成了新的多尺度特征提取模块CBAM-Res2Net。在后端网络中设计了一个扩张模块以提取更深层的特征并进行特征融合回归,从而生成高质量的密度图。并且分别在ShanghaiTech Part A、ShanghaiTech Part B和UCF_CC_50数据集上进行了算法对比实验,本文模型在上述数据集的平均绝对误差和均方根误差分别为61.4、7.3、255.6和98.5、10.8、310.2,综合性能均优于其他算法,验证了模型的准确性和鲁棒性。展开更多
文摘针对静态人群图像中背景干扰和尺度变化等问题,采用多尺度特征提取模块(Res2Net)以更细的粒度提取多尺度特征,提高对不同尺寸人头的计数性能;引入卷积注意力模块(CBAM),分别在通道域和空间域上提高人群区域的权重,有效改善了高密度和复杂的人群场景下背景干扰等问题。在此基础上,将CBAM模块集成到Res2Net模块中,形成了新的多尺度特征提取模块CBAM-Res2Net。在后端网络中设计了一个扩张模块以提取更深层的特征并进行特征融合回归,从而生成高质量的密度图。并且分别在ShanghaiTech Part A、ShanghaiTech Part B和UCF_CC_50数据集上进行了算法对比实验,本文模型在上述数据集的平均绝对误差和均方根误差分别为61.4、7.3、255.6和98.5、10.8、310.2,综合性能均优于其他算法,验证了模型的准确性和鲁棒性。