Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imida...Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.展开更多
The desensitization of nitramine explosives while maintaining energetic performance is challenging.A highly efficient desensitizer is the key to solving the antinomy.This study focuses on using porous organic cages(PO...The desensitization of nitramine explosives while maintaining energetic performance is challenging.A highly efficient desensitizer is the key to solving the antinomy.This study focuses on using porous organic cages(POCs),specifically CC3 and RCC3,to desensitize RDX.By coating 0.1 wt%–5 wt%of POCs on RDX particles,a series of composite energetic materials were prepared.Characterization results show that POCs change the surface morphology of RDX,and there are interfacial interactions between them.The RDX@POCs composites exhibit enhanced stabilities in terms of heat,impact,friction,and electrostatic spark.For the RDX@RCC3-5%composite,the impact sensitivity(E_(IS)),friction sensitivity(E_(FS)),and electrostatic sensitivity(EES)were significantly reduced by 66.7%,68.8%,and 56.5%,respectively,while the detonation velocity decreased by merely 3.1%.These findings indicate that POCs,especially RCC3,are promising desensitizers for nitramine explosives,and their desensitization mechanisms likely involve barrier and buffering effects.The distinct desensitization behavior of RDX@RCC3 highlights the effectiveness of POCs in reducing the sensitivity of RDX without significantly compromising its energetic properties.展开更多
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime...Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.展开更多
文摘Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.
文摘The desensitization of nitramine explosives while maintaining energetic performance is challenging.A highly efficient desensitizer is the key to solving the antinomy.This study focuses on using porous organic cages(POCs),specifically CC3 and RCC3,to desensitize RDX.By coating 0.1 wt%–5 wt%of POCs on RDX particles,a series of composite energetic materials were prepared.Characterization results show that POCs change the surface morphology of RDX,and there are interfacial interactions between them.The RDX@POCs composites exhibit enhanced stabilities in terms of heat,impact,friction,and electrostatic spark.For the RDX@RCC3-5%composite,the impact sensitivity(E_(IS)),friction sensitivity(E_(FS)),and electrostatic sensitivity(EES)were significantly reduced by 66.7%,68.8%,and 56.5%,respectively,while the detonation velocity decreased by merely 3.1%.These findings indicate that POCs,especially RCC3,are promising desensitizers for nitramine explosives,and their desensitization mechanisms likely involve barrier and buffering effects.The distinct desensitization behavior of RDX@RCC3 highlights the effectiveness of POCs in reducing the sensitivity of RDX without significantly compromising its energetic properties.
基金supported by the National Natural Science Foundation of China(Grant No.40102005 and No.49725205).
文摘Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates.