期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
CABOSFV算法中集合稀疏差异度阈值确定方法
1
作者 宋艳 肖乾 《舰船科学技术》 北大核心 2006年第1期99-102,共4页
在实际应用中,CABOSFV算法初始参数———集合稀疏差异度阈值b的确定是否合理,对聚类结果是否有效起决定作用。本文针对如何科学方便地确定集合稀疏差异度阈值b进行了深入研究,给出了集合稀疏差异度阈值确定方法,并通过该方法进行了实... 在实际应用中,CABOSFV算法初始参数———集合稀疏差异度阈值b的确定是否合理,对聚类结果是否有效起决定作用。本文针对如何科学方便地确定集合稀疏差异度阈值b进行了深入研究,给出了集合稀疏差异度阈值确定方法,并通过该方法进行了实例计算。计算结果表明,由于该方法能够确定聚类结果中类的对象组成最小数量,聚类结果的粗糙与精细程度可以人为控制,对聚类结果的准确及高效提供了很好的保证,能够为CABOSFV算法进行聚类提供合理的阈值。 展开更多
关键词 聚类 cabosfv算法 集合稀疏差异度 阅值
在线阅读 下载PDF
考虑数据排序的改进CABOSFV聚类 被引量:2
2
作者 武森 王静 谭一松 《计算机工程与应用》 CSCD 北大核心 2011年第34期127-129,共3页
CABOSFV是基于稀疏特征进行高维数据聚类的高效算法,但算法的聚类质量受数据输入顺序的影响。针对此问题,提出考虑数据排序的改进CABOSFV聚类(CABOSFV_CS),通过定义稀疏性指数来描述数据的稀疏特征,并按照稀疏性指数升序对数据进行排序... CABOSFV是基于稀疏特征进行高维数据聚类的高效算法,但算法的聚类质量受数据输入顺序的影响。针对此问题,提出考虑数据排序的改进CABOSFV聚类(CABOSFV_CS),通过定义稀疏性指数来描述数据的稀疏特征,并按照稀疏性指数升序对数据进行排序以改进CABOSFV算法的聚类质量。采用UCI基准数据集进行实验,结果表明与传统的CABOSFV算法相比,CABOSFV_CS有效地提高了聚类准确率。 展开更多
关键词 cabosfv算法 高维数据 稀疏特征 聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部