期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于YOLO v5l-Im的排水管道缺陷检测方法及效果分析 被引量:2
1
作者 王俊岭 王晨晨 熊玉华 《科学技术与工程》 北大核心 2024年第18期7833-7842,共10页
针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Fo... 针对YOLO v5l(you only look once version 5 large)算法对于小目标、少样本且背景复杂的排水管道缺陷图像检测的精度低、误检和漏检率较高等问题,提出了一种基于YOLO v5l-Im算法的排水管道缺陷检测改进方法。做了三点改进:首先提出了Focal-EIoU(focal embedding intersection over union)损失函数,有效提升了检测模型的性能;其次为增强检测模型对小目标缺陷的检测效果,减少缺陷误检和漏检的概率,将骨干网络中浅层特征图融合到双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)中,增加针对小目标的预测层;最后在YOLO v5l中引入坐标注意力机制(coordinate attention,CA),提高模型对图像中感兴趣区域的敏感程度,减少冗余背景信息的干扰。3种改进对平均检测准确率(mean average precision,mAP)的提升分别为2.0、2.9、5.9个百分点。将三种有效改进融合到一起,检测结果表明:本文提出的YOLO v5l-Im模型的mAP达到了92.1%,较原模型的85.5%提升了6.5个百分点。由此可见,所做的改进有效增强了YOLO v5l对排水管道缺陷的检测能力。 展开更多
关键词 排水管道缺陷检测 YOLO v5l Focal-EIoU损失函数 BiFPN特征网络 ca注意力模块 融合检测
在线阅读 下载PDF
基于改进DeepLabv3+的番茄图像多类别分割方法 被引量:14
2
作者 顾文娟 魏金 +2 位作者 阴艳超 刘孝保 丁灿 《农业机械学报》 EI CAS CSCD 北大核心 2023年第12期261-271,共11页
番茄图像中多类别目标的准确识别是实现自动化采摘的技术前提,针对现有网络分割精度低、模型参数多的问题,提出一种基于改进DeepLabv3+的番茄图像多类别分割方法。该方法使用幻象网络(GhostNet)和坐标注意力模块(Coordinate attention, ... 番茄图像中多类别目标的准确识别是实现自动化采摘的技术前提,针对现有网络分割精度低、模型参数多的问题,提出一种基于改进DeepLabv3+的番茄图像多类别分割方法。该方法使用幻象网络(GhostNet)和坐标注意力模块(Coordinate attention, CA)构建CA-GhostNet作为DeepLabv3+的主干特征提取网络,减少网络的参数量并提高模型的分割精度,并设计了一种多分支解码结构,用于提高模型对小目标类别的分割能力。在此基础上,基于单、双目小样本数据集使用合成数据集的权值参数进行迁移训练,对果实、主干、侧枝、吊线等8个语义类别进行分割。结果表明,改进的DeepLabv3+模型在单目数据集上的平均交并比(MIoU)和平均像素准确率(MPA)分别为68.64%、78.59%,在双目数据集上的MIoU和MPA分别达到73.00%、80.59%。此外,所提模型内存占用量仅为18.5 MB,单幅图像推理时间为55 ms,与基线模型相比,在单、双目数据集上的MIoU分别提升6.40、6.98个百分点,与HRNet、UNet、PSPNet相比,内存占用量压缩82%、79%、88%。该研究可为番茄采摘机器人的智能采摘和安全作业提供参考。 展开更多
关键词 番茄 语义分割 DeepLabv3+ GhostNet ca注意力模块
在线阅读 下载PDF
面向航天光学遥感复杂场景图像的舰船检测 被引量:10
3
作者 刘忻伟 朴永杰 +2 位作者 郑亮亮 徐伟 籍浩林 《光学精密工程》 EI CAS CSCD 北大核心 2023年第6期892-904,共13页
基于深度学习的目标检测算法直接应用于航天光学遥感(Space Optical Remote Sensing,SORS)复杂场景图像中会出现舰船目标检测效果不佳的问题。针对该问题,本文以近海复杂背景的密集排布舰船和远海多干扰中小目标舰船为检测对象,提出一... 基于深度学习的目标检测算法直接应用于航天光学遥感(Space Optical Remote Sensing,SORS)复杂场景图像中会出现舰船目标检测效果不佳的问题。针对该问题,本文以近海复杂背景的密集排布舰船和远海多干扰中小目标舰船为检测对象,提出一种改进的YOLOX-s(Improved You Only Look Once-s,IM-YOLO-s)算法。在特征提取阶段,引入CA位置注意力模块,分别从高度与宽度两个方向对目标信息的位置进行权重分配,提高了模型的检测精度;在特征融合阶段,将BiFPN加权特征融合算法应用到IM-YOLO-s的颈部结构,进一步提升了小目标船只检测精度;在模型优化训练阶段,以CIoU损失替代IoU损失、以变焦损失替代置信度损失、调整类别损失权重,增大了正样本分布密集区域的训练权重,减少了密集分布船只的漏检率。另外,在HRSC2016数据集的基础上增加额外的离岸中小舰船图像,自建了HRSC2016-Gg数据集,HRSC2016-Gg数据集增强了海上船只及中小像素船只检测时的鲁棒性。通过数据集HRSC2016-Gg评测算法性能,实验结果表明:IM-YOLO-s对于SORS场景舰船检测的召回率为97.18%,AP@0.5为96.77%,F1值为0.95,较原YOLOX-s算法分别提高了2.23%,2.40%和0.01。这充分表明该算法可以对SORS复杂背景图像进行高质量舰船检测。 展开更多
关键词 舰船检测 深度学习 ca注意力模块 加权特征融合 损失函数优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部