期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
拟对角扩张C~*-代数Cuntz半群的性质
1
作者
方燕
《上海海事大学学报》
北大核心
2018年第4期106-108,共3页
设0→I→B→πA→0是一个拟对角扩张。为研究C*-代数B的性质,对C*-代数B的理想I和商代数A的性质进行研究。证明如下结论:(1)如果I和A具有无孔性质,则B也具有无孔性质;(2)如果I和A具有弱可分性质,则B也具有弱可分性质;(3)如果I和A具有Ri...
设0→I→B→πA→0是一个拟对角扩张。为研究C*-代数B的性质,对C*-代数B的理想I和商代数A的性质进行研究。证明如下结论:(1)如果I和A具有无孔性质,则B也具有无孔性质;(2)如果I和A具有弱可分性质,则B也具有弱可分性质;(3)如果I和A具有Riesz插值性质,则B也具有Riesz插值性质。上述结论可以用来研究非单的C*-代数的正则性质。
展开更多
关键词
c
*
-
代数
拟对角扩张
c
untz半群
在线阅读
下载PDF
职称材料
题名
拟对角扩张C~*-代数Cuntz半群的性质
1
作者
方燕
机构
上海海事大学文理学院
出处
《上海海事大学学报》
北大核心
2018年第4期106-108,共3页
基金
国家自然科学基金(11501357)
文摘
设0→I→B→πA→0是一个拟对角扩张。为研究C*-代数B的性质,对C*-代数B的理想I和商代数A的性质进行研究。证明如下结论:(1)如果I和A具有无孔性质,则B也具有无孔性质;(2)如果I和A具有弱可分性质,则B也具有弱可分性质;(3)如果I和A具有Riesz插值性质,则B也具有Riesz插值性质。上述结论可以用来研究非单的C*-代数的正则性质。
关键词
c
*
-
代数
拟对角扩张
c
untz半群
Keywords
c
*
-
algebra
quasidiagonal extension
c
untz semigroup
分类号
O177 [理学—基础数学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
拟对角扩张C~*-代数Cuntz半群的性质
方燕
《上海海事大学学报》
北大核心
2018
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部