针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提...针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。展开更多
在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。...在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。该算法在传统蝴蝶算法上加入收敛因子,来加快全局搜索速度;引入自适应权重系数,来提高蝴蝶优化算法在局部搜索的搜索速度及追踪精度等性能。通过仿真,对比混合算法(INBOA)与BOA、粒子群优化PSO(particle swarm optimization)算法、灰狼优化算法GWO(gray wolf optimization)的函数收敛曲线,验证所提算法具有收敛速度快、搜索精度高的优点;对比INBOA、BOA、PSO、GWO的MPPT算法在静态与动态环境下的性能指标可知,INBOA的MPPT算法具有更高追踪效率、更快收敛速度以及更小的搜索震荡。从而进一步验证混合算法的优越性。展开更多
文摘针对传统的最大功率点追踪(Maximum Power Point Tracking,MPPT)算法陷入局部极值不能找到最大功率点(Maximum Power Point,MPP)以及传统的蝴蝶优化算法(Butterfly Optimization Algorithm,BOA)存在收敛速度慢和搜索震荡较大等问题,提出一种改进的蝴蝶优化算法(Improved Butterfly Optimization Algorithm,IBOA)结合电导增量法(Conductance Increment Method,INC)的复合MPPT追踪方法。在IBOA中,引入自适应动态转换概率来平衡算法的全局与局部搜索,然后在全局搜索阶段引入Levy飞行策略,使蝴蝶个体广泛分布于搜索空间中,提高全局寻优能力;同时在局部搜索中设置新的寻优对象,并通过贪婪算法进行筛选保留,提高局部搜索的能力。当系统位于MPP附近时,利用INC局部搜索能力强的优点快速、准确地收敛到MPP并且稳定功率的输出。仿真结果表明,在静态和动态阴影下与BOA、PSO算法进行对比,所提算法具有更快的追踪速度、更高的追踪效率和更强的鲁棒性。
文摘在局部遮荫下,针对传统最大功率跟踪MPPT(maximum power point tracking)算法不能跳出局部最优找到全局最大功率,及传统蝴蝶优化算法BOA(butterfly optimization algorithm)存在搜索震荡大和收敛慢等问题,提出一种新型的MPPT控制算法。该算法在传统蝴蝶算法上加入收敛因子,来加快全局搜索速度;引入自适应权重系数,来提高蝴蝶优化算法在局部搜索的搜索速度及追踪精度等性能。通过仿真,对比混合算法(INBOA)与BOA、粒子群优化PSO(particle swarm optimization)算法、灰狼优化算法GWO(gray wolf optimization)的函数收敛曲线,验证所提算法具有收敛速度快、搜索精度高的优点;对比INBOA、BOA、PSO、GWO的MPPT算法在静态与动态环境下的性能指标可知,INBOA的MPPT算法具有更高追踪效率、更快收敛速度以及更小的搜索震荡。从而进一步验证混合算法的优越性。
文摘针对蝴蝶优化算法(butterfly optimization algorithm,BOA)在复杂环境路径规划过程中求解最短路径时存在收敛速度慢、易陷入局部最优等缺点,提出一种改进的蝴蝶优化算法。首先,在初始化蝴蝶种群时,为保证初代种群多样化,避免陷入局部最优解,通过Tent映射生成初代种群位置;其次,在蝴蝶香味计算阶段引入动态感觉模态,随着迭代过程的持续推进逐步增强蝴蝶的香味值,以缩短收敛时间;再次,为进一步缩短收敛时间,在全局搜索阶段引入遗传算法中的选择因子加快蝴蝶在全局搜索时向最优蝴蝶移动的速度;然后,在局部搜索阶段引入动态变异因子,有效避免在路径规划时陷入局部最优;最后,使用一种基于视线(line of sight,LOS)检测方法的初始种群生成策略,以进一步减少路径中断点的生成,同时确保由BOA算法生成的路径可行解的多样性。实验结果表明,改进的蝴蝶优化算法具有较快的收敛速度,且规划出来的路径在保证路径长度合理的情况下具有更高的平滑度。