This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of ...This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull.展开更多
The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas ...The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.展开更多
基金This work is supported by the National Natural Science Foundation of China research grant#51679056Natural Science Foundation of Heilongjiang Province of China grant#E2016024.
文摘This paper describes a design optimization study of the composite egg-shaped submersible pressure hull employing optimization and finite element analysis(FEA)tools as a first attempt to provide an optimized design of the composite egg-shaped pressure hull for manufacturing or further investigations.A total of 15 optimal designs for the composite egg-shaped pressure hull under hydrostatic pressure are obtained in terms of fibers’angles and the number of layers for 5 lay-up arrangements and 3 unidirectional(UD)composite materials.The optimization process is performed utilizing a genetic algorithm and FEA in ANSYS.The minimization of the buoyancy factor eB:FT is selected as the objective for the optimization under constraints on both material failure and buckling strength.Nonlinear buckling analysis is conducted for one optimal design considering both geometric nonlinearity and imperfections.A sensitivity study is also conducted to further investigate the influence of the design variables on the optimal design of the egg-shaped pressure hull.
基金Project(51576084)supported by the National Natural Science Foundation of China。
文摘The buoyancy effect on micro hydrogen jet flames in still air was numerially studied.The results show that when the jet velocity is relatively large(V≥0.2 m/s),the flame height,width and temperature decrease,whereas the peak OH mass fraction increases significantly under normal gravity(g=9.8 m/s^2).For a very low jet velocity(e.g.,V=0.1 m/s),both the peak OH mass fraction and flame temperature under g=9.8 m/s^2 are lower than the counterparts under g=0 m/s^2.Analysis reveals that when V≥0.2 m/s,fuel/air mixing will be promoted and combustion will be intensified due to radial flow caused by the buoyancy effect.However,the flame temperature will be slightly decreased owing to the large amount of entrainment of cold air into the reaction zone.For V=0.1 m/s,since the heat release rate is very low,the entrainment of cold air and fuel leakage from the rim of tube exit lead to a significant drop of flame temperature.Meanwhile,the heat loss rate from fuel to inner tube wall is larger under g=9.8 m/s^2 compared to that under g=0 m/s^2.Therefore,the buoyancy effect is overall negative at very low jet velocities.