提早预知植物生长发育是智能育种过程的重要组成部分,针对植物表型难以精准预测和模拟的问题,利用植物生长发育的空间和时间依赖性,提出了一种基于时空长短时记忆网络(Spatiotemporal long short-term memory,STLSTM)的植物生长发育预...提早预知植物生长发育是智能育种过程的重要组成部分,针对植物表型难以精准预测和模拟的问题,利用植物生长发育的空间和时间依赖性,提出了一种基于时空长短时记忆网络(Spatiotemporal long short-term memory,STLSTM)的植物生长发育预测模型,实现植物生长发育的预测。首先,通过微调Mask RCNN模型实现识别、提取植物掩模,预处理具有时空相关性的植物生长发育图像序列,构建植物生长发育预测数据集。然后,基于STLSTM建立植物生长发育预测模型,利用历史生长发育图像序列,融合时空深度特征,预测植物未来的生长发育图像序列。研究结果表明,所提出模型预测的图像序列与生长发育实际图像序列具有较高的一致性和相似性,首个预测时间节点的结构相似度为0.8741,均方误差为17.10,峰值信噪比为30.83,测试集的冠层叶面积、冠幅和叶片数预测R^(2)分别为0.9619、0.9087和0.9158。该研究实现了基于植物生长发育图像序列的生长发育预测,有效减少了田间反复试验的时间、土地和人力成本,为提高智能育种效率提供了参考。展开更多
文摘采用UHPLC-QE-Orbitrap MS技术结合网络分析和化学计量学建立钴胺素C(cblC)缺乏症的临床表型系统表征和预测模型,利用尝试解开其复杂性。基于UHPLC-QE-Orbitrap MS技术在正、负模式下采集的血液非靶向代谢组学图谱,利用数据驱动网络算法Connect the Dots(CTD)快速搜索高连通的扰动代谢物,化学计量学算法学习其组别间复杂微小变化模式。通过对两种临床表型(癫痫和代谢综合征)的研究,结果表明CTD算法识别出的扰动代谢物子集展示出高度的临床表型特异性,且涉及的富集通路扰动均被报道与癫痫和代谢综合征的致病机制密切相关。进一步,CTD算法能够量度高连通扰动代谢物间的协变信息,构建主要疾病模块系统地表征癫痫和代谢综合征的复杂致病机制。识别出的扰动代谢物作为特征变量集,采用5-折交叉验证,偏最小二乘判别分析、支持向量机和随机森林的受试者工作特征曲线下面积预测均值分别为0.849、0.897和0.909(癫痫),0.889、0.931和0.921(代谢综合征),马修斯相关系数预测均值分别为0.667、0.668和0.723(癫痫),0.686、0.696和0.787(代谢综合征)。上述结果表明了提出的计算方法在揭示cblC缺乏症的临床表型复杂性和指导其个性化诊断策略方面的有效性。
文摘提早预知植物生长发育是智能育种过程的重要组成部分,针对植物表型难以精准预测和模拟的问题,利用植物生长发育的空间和时间依赖性,提出了一种基于时空长短时记忆网络(Spatiotemporal long short-term memory,STLSTM)的植物生长发育预测模型,实现植物生长发育的预测。首先,通过微调Mask RCNN模型实现识别、提取植物掩模,预处理具有时空相关性的植物生长发育图像序列,构建植物生长发育预测数据集。然后,基于STLSTM建立植物生长发育预测模型,利用历史生长发育图像序列,融合时空深度特征,预测植物未来的生长发育图像序列。研究结果表明,所提出模型预测的图像序列与生长发育实际图像序列具有较高的一致性和相似性,首个预测时间节点的结构相似度为0.8741,均方误差为17.10,峰值信噪比为30.83,测试集的冠层叶面积、冠幅和叶片数预测R^(2)分别为0.9619、0.9087和0.9158。该研究实现了基于植物生长发育图像序列的生长发育预测,有效减少了田间反复试验的时间、土地和人力成本,为提高智能育种效率提供了参考。