In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile traj...In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.展开更多
To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubbl...To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.展开更多
Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill ...Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.展开更多
The properties and thickness of the bubbles in the froth control the flotation process. There is no work showing how to measure bubble film composition and thickness by a straightforward manner. In this work, a novel ...The properties and thickness of the bubbles in the froth control the flotation process. There is no work showing how to measure bubble film composition and thickness by a straightforward manner. In this work, a novel approach, a custom-designed bubble cell associated with layer interferometry(in the UV-vis region) and FT-IR spectroscopy was used to investigate the effect of solid particle type(hydrophilic vs hydrophobic), concentration and bubble diameter on stability of a bubble blown in air. Stability was quantified by measuring bubble lifetime and hydrated film thickness. Kerosene with silicone oil as a foaming agent was used to evaluate the impact of bubble diameter(test series I). Frother solutions(MIBC, Dowfroth 250, Hexanol and F-150) were used for the solid type concentration experiments(test series II). In the first series of experiments, it was determined that as the diameter of a bubble increased from 10 to 25 mm, so did the hydrated film thickness from 350 to 1000 nm. In the second series, as the silica concentration increased(0 to 10%), an increase in bubble lifetime and hydrated film thickness was resulted(130%-250%). An impact of solid hydrophobicity was found but to a lesser degree than expected. It is possible that the small particle size(<0.1 m) of silica was responsible for this behavior. The findings are used to interpret the effect of solids in flotation froth.展开更多
The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved ...The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.展开更多
The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most impor...The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation,as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst.This causes the increased concentration in the froth compared to the bulk concentration,named as frother partitioning.Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known.There currently exists no such a topic aiming to link these two key parameters.To fill this vacancy,the correspondence between bubble size and frother partitioning was examined.Bubble size was measured by sampling-for-imaging(SFI)technique.Using total organic carbon(TOC)analysis to measure the frother partitioning between froth and bulk phases was determined.Measurements have shown,with no exceptions including four different frothers,higher frother concentration is in the bulk than in the froth.The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two,represented by CFroth/CBulk and D32.The CFroth/CBulkand D32 curves show similar exponential decay relationships as a function of added frother in the system,strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.展开更多
文摘In this paper,the failure caused by HRAM loads which were generated by high-speed projectile penetration,and protection technology of the fluid-filled structure were explored.A bubble was preset on the projectile trajectory in a fluid-filled structure.Based on the reflection and transmission phenomena of pressure waves at the gas-liquid interface and the compressibility characteristics of gases,a numerical analysis was conducted on the influence of preset bubble on projectile penetration and structural failure characteristics.The results indicate that the secondary water-entry impact phenomenon occurs when a preset bubble exists on the projectile trajectory,leading to the secondary water entry impact loads.The rarefaction waves reflected on the surface of the preset bubble cause the attenuation ratio of the initial impact pressure peak to reach 68.8%and the total specific impulse attenuation ratio to reach 48.6%.Furthermore,the larger the bubble,the faster the projectile,and the more obvious the attenuation effect.Moreover,due to the compressibility of the bubble,the global deformation attenuation ratio of the front and rear walls can reach over 80%.However,the larger the bubble size,the faster the projectile velocity,the smaller the local deformation attenuation effect of the rear wall,and the more severe the failure at the perforation of the rear wall.
基金Project(51676087)supported by the National Natural Science Foundation of China
文摘To seek and describe the influence of bubble size on geometric and motion characteristics of the bubble,six nozzles with different outlet diameters were selected to inject air into water and to produce different bubble sizes.High-speed photography in conjunction with an in-house bubble image processing code was used.During the evolution of the bubble,bubble shape,traveling trajectory and the variation of bubble velocity were obtained.Bubble sizes acquired varied from0.25to8.69mm.The results show that after the bubble is separated from the nozzle,bubble shape sequentially experiences ellipsoidal shape,hat shape,mushroom shape and eventually the stable ellipsoidal shape.As the bubble size increases,the oscillation of the bubble surface is intensified.At the stabilization stage of bubble motion,bubble trajectories conform approximately to the sinusoidal function.Meanwhile,with the increase in bubble size,the bubble trajectory tends to be straightened and the influence of the horizontal bubble velocity component on the bubble trajectory attenuates.The present results explain the phenomena related to relatively large bubble size,which extends the existing relationship between the bubble terminal velocity and the equivalent bubble diameter.
基金Project supported by the Chair in Mineral Processing at McGill University,under the Collaborative Research and Development Program of NSERC(Natural Sciences and Engineering Research Council of Canada)with industrial sponsorship from Vale,Teck Cominco,Xstrata Process Support,Agnico-Eagle,Shell Canada,Barrick Gold,COREM,SGS Lakefield Research and Flottec
文摘Effect of frothers in preventing bubble coalescence during flotation of minerals has long been investigated.To evaluate the performance of a frother,an apparatus to measure the bubble size is a basic necessity.McGill Bubble Size Analyzer(MBSA) or bubble viewer that has been developed and completed by McGill University's Mineral Processing Group during the last decade is a unique instrument to serve this purpose.Two parameters which are thought to influence the bubble size measurements by McGill bubble viewer include water quality and frother concentration in the chamber.Results show that there is no difference in Sauter mean(D32) when tap or de-ionized water was used instead of process water.However,the frother concentration,in this research DowFroth 250(DF250),inside the chamber exhibited a pronounced effect on bubble size.Frother concentration below a certain point can not prevent coalescence inside the chamber and therefore caution must be taken in plant applications.It was also noted that the frother concentration which has been so far practiced in plant measurements(CCC75-CCC95) is high enough to prevent coalescence with the bubble viewer.
基金Project(2013BAB14B05)supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China
文摘The properties and thickness of the bubbles in the froth control the flotation process. There is no work showing how to measure bubble film composition and thickness by a straightforward manner. In this work, a novel approach, a custom-designed bubble cell associated with layer interferometry(in the UV-vis region) and FT-IR spectroscopy was used to investigate the effect of solid particle type(hydrophilic vs hydrophobic), concentration and bubble diameter on stability of a bubble blown in air. Stability was quantified by measuring bubble lifetime and hydrated film thickness. Kerosene with silicone oil as a foaming agent was used to evaluate the impact of bubble diameter(test series I). Frother solutions(MIBC, Dowfroth 250, Hexanol and F-150) were used for the solid type concentration experiments(test series II). In the first series of experiments, it was determined that as the diameter of a bubble increased from 10 to 25 mm, so did the hydrated film thickness from 350 to 1000 nm. In the second series, as the silica concentration increased(0 to 10%), an increase in bubble lifetime and hydrated film thickness was resulted(130%-250%). An impact of solid hydrophobicity was found but to a lesser degree than expected. It is possible that the small particle size(<0.1 m) of silica was responsible for this behavior. The findings are used to interpret the effect of solids in flotation froth.
基金Projects(51634010,51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key Research and Development Program of Hunan Province,China
文摘The knowledge of bubble profiles in gas-liquid two-phase flows is crucial for analyzing the kinetic processes such as heat and mass transfer, and this knowledge is contained in field data obtained by surface-resolved computational fluid dynamics (CFD) simulations. To obtain this information, an efficient bubble profile reconstruction method based on an improved agglomerative hierarchical clustering (AHC) algorithm is proposed in this paper. The reconstruction method is featured by the implementations of a binary space division preprocessing, which aims to reduce the computational complexity, an adaptive linkage criterion, which guarantees the applicability of the AHC algorithm when dealing with datasets involving either non-uniform or distorted grids, and a stepwise execution strategy, which enables the separation of attached bubbles. To illustrate and verify this method, it was applied to dealing with 3 datasets, 2 of them with pre-specified spherical bubbles and the other obtained by a surface-resolved CFD simulation. Application results indicate that the proposed method is effective even when the data include some non-uniform and distortion.
基金Project supported by the Collaborative Research and Development Program of Natural Sciences and Engineering Research Council of Canada
文摘The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved.Meanwhile,it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation,as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst.This causes the increased concentration in the froth compared to the bulk concentration,named as frother partitioning.Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known.There currently exists no such a topic aiming to link these two key parameters.To fill this vacancy,the correspondence between bubble size and frother partitioning was examined.Bubble size was measured by sampling-for-imaging(SFI)technique.Using total organic carbon(TOC)analysis to measure the frother partitioning between froth and bulk phases was determined.Measurements have shown,with no exceptions including four different frothers,higher frother concentration is in the bulk than in the froth.The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two,represented by CFroth/CBulk and D32.The CFroth/CBulkand D32 curves show similar exponential decay relationships as a function of added frother in the system,strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.