Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the ...Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the mechanism of rock tensile failure caused by this coupled stress mode,the Brazilian disc tests were carried on red sandstone under high pre-static load induced by dynamic disturbance.Based on the pure static tensile fracture load of red sandstone specimen,two static load levels(80%and 90%of the pure static tensile fracture load)were selected as the initial high pre-static loading state,and then the dynamic disturbance load was applied until the rock specimen was destroyed.The dynamic disturbance loading mode adopted a sinusoidal wave(sine-wave)load,and the loading wave amplitude was 20%and 10%of the pure static tensile fracture load,respectively.The dynamic disturbance frequencies were set to 1,10,20,30,40,and 50 Hz.The results show that the tensile failure strength and peak displacement of red sandstone specimens under coupled load actions are lower than those under pure static tensile load,and both parameters decrease significantly with the increase of dynamic disturbance frequency.With the increase of dynamic disturbance frequency,the decrease range of tensile strength of red sandstone increased from 3.3%to 9.4%when the pre-static load level is 80%.While when the pre-static load level is 90%,the decrease range will increase from 7.4%to 11.6%.This weakening effect of tensile strength shows that the deep surrounding rock is more likely to fail under the coupled load actions of pre-static load and dynamic disturbance.In this tensile failure mechanism of the deep surrounding rock,the stress environment of deep sidewall rock determines that the failure mode of rock is a tensile failure,the pre-static load level dominates the tensile failure strength of surrounding rock,and dynamic disturbance promotes the strength-weakening effect and affects the weakening range.展开更多
In this paper,Brazilian test was performed on disk samples of analogue materials with defined structural planes.The surface strain evolution process of the disk samples during loading was analyzed via digital image co...In this paper,Brazilian test was performed on disk samples of analogue materials with defined structural planes.The surface strain evolution process of the disk samples during loading was analyzed via digital image correlation.The damage evolution process was explored from a microscopic perspective by combining discrete element numerical simulation technology.The criterion of the failure mode of the disc specimen in the split state was theoretically deduced.The influence of structural surface roughness and loading inclination angle on the stress state at the center of the specimen was explored.The results showed that the failure modes of the samples could be divided into three typical modes as matrix failure,structural plane failure and combination failure.The rough structural plane improves the failure strength of the specimen by limiting its lateral deformation,and the degree of improvement weakens continuously with the increase of the inclination angle of the structural plane.As the inclination angle of the structural plane increases,the main type of microcracks in the structural plane changes from shear microcracks to tensile microcracks.This study contributes to a better understanding of macro-and meso-failure characteristics of rock masses with structural planes under a splitting state.展开更多
[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study...[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.展开更多
基金Projects(42077244,41877272,41472269)supported by the National Natural Science Foundation of ChinaProject(2242020R10023)supported by the Fundamental Research Funds for the Central Universities of Southeast University,China。
文摘Tensile failure(spalling or slabbing)often occurs on the sidewall of deep tunnel,which is closely related to the coupled stress state of deep rock mass under high pre-static load and dynamic disturbance.To reveal the mechanism of rock tensile failure caused by this coupled stress mode,the Brazilian disc tests were carried on red sandstone under high pre-static load induced by dynamic disturbance.Based on the pure static tensile fracture load of red sandstone specimen,two static load levels(80%and 90%of the pure static tensile fracture load)were selected as the initial high pre-static loading state,and then the dynamic disturbance load was applied until the rock specimen was destroyed.The dynamic disturbance loading mode adopted a sinusoidal wave(sine-wave)load,and the loading wave amplitude was 20%and 10%of the pure static tensile fracture load,respectively.The dynamic disturbance frequencies were set to 1,10,20,30,40,and 50 Hz.The results show that the tensile failure strength and peak displacement of red sandstone specimens under coupled load actions are lower than those under pure static tensile load,and both parameters decrease significantly with the increase of dynamic disturbance frequency.With the increase of dynamic disturbance frequency,the decrease range of tensile strength of red sandstone increased from 3.3%to 9.4%when the pre-static load level is 80%.While when the pre-static load level is 90%,the decrease range will increase from 7.4%to 11.6%.This weakening effect of tensile strength shows that the deep surrounding rock is more likely to fail under the coupled load actions of pre-static load and dynamic disturbance.In this tensile failure mechanism of the deep surrounding rock,the stress environment of deep sidewall rock determines that the failure mode of rock is a tensile failure,the pre-static load level dominates the tensile failure strength of surrounding rock,and dynamic disturbance promotes the strength-weakening effect and affects the weakening range.
基金Project(52274148)supported by the National Natural Science Foundation of ChinaProject(2022XJLJ01)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this paper,Brazilian test was performed on disk samples of analogue materials with defined structural planes.The surface strain evolution process of the disk samples during loading was analyzed via digital image correlation.The damage evolution process was explored from a microscopic perspective by combining discrete element numerical simulation technology.The criterion of the failure mode of the disc specimen in the split state was theoretically deduced.The influence of structural surface roughness and loading inclination angle on the stress state at the center of the specimen was explored.The results showed that the failure modes of the samples could be divided into three typical modes as matrix failure,structural plane failure and combination failure.The rough structural plane improves the failure strength of the specimen by limiting its lateral deformation,and the degree of improvement weakens continuously with the increase of the inclination angle of the structural plane.As the inclination angle of the structural plane increases,the main type of microcracks in the structural plane changes from shear microcracks to tensile microcracks.This study contributes to a better understanding of macro-and meso-failure characteristics of rock masses with structural planes under a splitting state.
文摘[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development.