Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, ...Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multiecho T*2-w MRI. Generated maps were investigated from signal-to-noise ratio(SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation.展开更多
This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 2...This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.展开更多
Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat tre...Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.展开更多
Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfe...Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfer,nitrogen escape phenomenon,weld appearance,nondestructive detection,nitrogen content distribution,microstructure and mechanical properties.There are two nitrogen sources of the nitrogen in the weld:high nitrogen base material and shielding gas.The effect of shielding gas is mainly reflected in these two aspects.The change of the droplet transfer mode affects the fusion ratio,N2in the shielding gas can increase nitrogen content and promote the nitrogen uniform distribution.The addition of 2%O_(2)to Ar matrix can change the metal transfer from globular transfer to spray transfer,high nitrogen base material is thereby dissolved more to the molten pool,making nitrogen content increase,ferrite decrease and the mechanical properties improve.When applying N2-containing shielding gas,arc stability becomes poor and short-circuiting transfer frequency increases due to the nitrogen escape from droplets and the molten pool.Performance of the joints is improved with N_(2)increasing,but internal gas pores are easier to appear because of the poor capacity of low alloy steel to dissolve nitrogen,The generation of pores will greatly reduce the impact resistance.4-8%N2content in shielding gas is recommended in this study considering the integrated properties of the dissimilar welded joint.展开更多
Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwa...Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwater contamination or fault reactivation.Understanding of hydraulic fracture behavior at the interface is of pivotal importance for the successful development of layered reservoirs.In this paper,a twodimensional analytical model was developed to examine HF penetration and termination behavior at an orthogonal interface between two dissimilar materials.This model involves changes in the stress singularity ahead of the HF tip,which may alter at the formation interface due to material heterogeneity.Three critical stress conditions were considered to assess possible fracture behavior(i.e.,crossing,slippage,and opening)at the interface.Then,this model was verified by comparing its theoretical predictions to numerical simulations and three independent experiments.Good agreement with the simulation results and experimental data was observed,which shows the validity and reliability of this model.Finally,a parametric study was conducted to investigate the effects of key formation parameters(elastic modulus,Poisson’s ratio,and fracture toughness)between adjacent layers.These results indicate that the variation in the introduced parameters can limit or promote vertical HF growth by redistributing the induced normal and shear stresses at the interface.Among the three studied parameters,Poisson’s ratio has the least influence on the formation interface.When the fracture toughness and elastic modulus of the bounding layer are larger than those of the pay zone layer,the influence of fracture toughness will dominate the HF behavior at the interface;otherwise,the HF behavior will more likely be influenced by elastic modulus.展开更多
Gary Snyder is a famous American poet in the 1960s.His works often reflect Zen thought,which highly influenced the Beat Generation of that time,and even the whole western society.This article attempts to discuss some ...Gary Snyder is a famous American poet in the 1960s.His works often reflect Zen thought,which highly influenced the Beat Generation of that time,and even the whole western society.This article attempts to discuss some of the possible aspects in which Snyder’s Zen diverts from Chinese Zen thought.To find out the answer,four of Snyder’s poetry collections were mainly consulted,as well as information about the environment that he’d been living in.The discrepancy this article will show case is three-folded:first,what Snyder pursued might be"square Zen",which is different from Chinese Zen;second,his poems integrated some ideas from Indian folklores,thus contradicting that of Zen;third,giving consideration to his western background and specific historical environment,he might misinterpret Chinese Zen thought unconsciously or intentionally.This is an area which so far no current studies about Snyder have probed into,so the results are just tentative and exploratory.展开更多
The name is the unique cultural phenomenon in human society.One’sOneooOoOOOOOOOO name not only a sign used to dis⁃tinguish him/her from others,but also a mark accompanying his/her whole life.It includes much informat...The name is the unique cultural phenomenon in human society.One’sOneooOoOOOOOOOO name not only a sign used to dis⁃tinguish him/her from others,but also a mark accompanying his/her whole life.It includes much information which implies the nation’s language,history,geography,religion,and cultural tradition.Research into the names of different nationalities will help us deepen the understanding of cultures.The commonness of Chinese and British cultures determines the similarities of Chinese and Britain names,while the different historical cultures,value ideas,thinking patterns,religion,and psychology determine the dissimilarities.This paper will discuss the similarities and dissimilarities between Chinese and British names from several aspects and analyze the cultural differences reflected by Chinese and British names.展开更多
基金Project supported in part by the National High Technology Research and Development Program of China(Grant Nos.2015AA043203 and 2012AA02A604)the National Natural Science Foundation of China(Grant Nos.81171402+8 种基金61471349and 81501463)the Innovative Research Team Program of Guangdong Province,China(Grant No.2011S013)the Science and Technological Program for Higher Education,Science and Researchand Health Care Institutions of Guangdong ProvinceChina(Grant No.2011108101001)the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030310360)the Fundamental Research Program of Shenzhen City,China(Grant No.JCYJ20140417113430639)Beijing Center for Mathematics and Information Interdisciplinary Sciences,China
文摘Similarity coefficient mapping(SCM) aims to improve the morphological evaluation of T*2weighted magnetic resonance imaging(T*2-w MRI). However, how to interpret the generated SCM map is still pending. Moreover, is it probable to extract tissue dissimilarity messages based on the theory behind SCM? The primary purpose of this paper is to address these two questions. First, the theory of SCM was interpreted from the perspective of linear fitting. Then, a term was embedded for tissue dissimilarity information. Finally, our method was validated with sixteen human brain image series from multiecho T*2-w MRI. Generated maps were investigated from signal-to-noise ratio(SNR) and perceived visual quality, and then interpreted from intra- and inter-tissue intensity. Experimental results show that both perceptibility of anatomical structures and tissue contrast are improved. More importantly, tissue similarity or dissimilarity can be quantified and cross-validated from pixel intensity analysis. This method benefits image enhancement, tissue classification, malformation detection and morphological evaluation.
基金the Thai Government scholarship given via Rajamangala University of Technology Krungthep (UTK), Bangkok, Thailand, for their financial support through this funded research project
文摘This present study applied gas tungsten arc welding in order to join AISI 304 and AISI 201 stainless steels.The objective was to find the optimum welding condition that gave a weld bead in accordance with DIN EN ISO 25817 quality level B, pitting corrosion potential of the weld metal of not less than that of the AISI304 base metal and a ratio of delta-ferrite in austenite matrix of the weld metal of not lower than 3%.Such a ratio is a criterion widely accepted to protect the weld metal from solidification cracking. At the welding current of 75 A and by using pure argon as a shielding gas 0 to 8 vol.% and applying a welding speed in the range of 2-3.5 mm·s^(-1) was found to give a complete weld bead with an increased depthper-width ratio(promote weldability). For welding speed in the range of 3 and 3.5 mm·s^(-1)(promote corrosion resistance). Increasing the welding speed in such a range decreased the amount of delta-ferrite in the austenite matrix, and increased the pitting corrosion potential of the weld metal to be 302 mV_(SCE).This value was still lower than the pitting corrosion potential of the AISI 304 base metal. Mixing nitrogen in argon shielding gas increased the nitrogen content in the weld. The optimum condition was found when using a welding speed of 3 mm· s^(-1) and mixing 1 vol.% of nitrogen in the argon shielding gas(promote weldability and corrosion resistance). Pitted areas after potentiodynamic test were observed in the austenite in which its Cr content was relatively low.
基金the support extended by the Centre for Materials Joining & Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India to carry out this research
文摘Joints between two different grades of aluminium alloys are need of the hour in many light weight military structures.In this investigation,an attempt has been made to join the heat treatable(AA 6061) and non-heat treatable(AA 5086) aluminium alloys by friction stir welding(FSW)process using three different tool pin profiles like straight cylindrical,taper cylindrical and threaded cylindrical.The microstructures of various regions were observed and analyzed by means of optical and scanning electron microscope.The tensile properties and microhardness were evaluated for the welded joint.From this investigation it is founded that the use of threaded pin profile of tool contributes to better flow of materials between two alloys and the generation of defect free stir zone.It also resulted in higher hardness values of 83 HV in the stir zone and higher tensile strength of 169 MPa compared to other two profiles.The increase in hardness is attributed to the formation of fine grains and intermetallics in the stir zone,and in addition,the reduced size of weaker regions,such as TMAZ and HAZ regions,results in higher tensile properties.
文摘Ar-N_(2)-O_(2)ternary shielding gas is employed in dissimilar welding between high nitrogen steel and low alloy steel.The effect of O_(2)and N_(2)is investigated based on the systematical analysis of the metal transfer,nitrogen escape phenomenon,weld appearance,nondestructive detection,nitrogen content distribution,microstructure and mechanical properties.There are two nitrogen sources of the nitrogen in the weld:high nitrogen base material and shielding gas.The effect of shielding gas is mainly reflected in these two aspects.The change of the droplet transfer mode affects the fusion ratio,N2in the shielding gas can increase nitrogen content and promote the nitrogen uniform distribution.The addition of 2%O_(2)to Ar matrix can change the metal transfer from globular transfer to spray transfer,high nitrogen base material is thereby dissolved more to the molten pool,making nitrogen content increase,ferrite decrease and the mechanical properties improve.When applying N2-containing shielding gas,arc stability becomes poor and short-circuiting transfer frequency increases due to the nitrogen escape from droplets and the molten pool.Performance of the joints is improved with N_(2)increasing,but internal gas pores are easier to appear because of the poor capacity of low alloy steel to dissolve nitrogen,The generation of pores will greatly reduce the impact resistance.4-8%N2content in shielding gas is recommended in this study considering the integrated properties of the dissimilar welded joint.
基金supported by the National Natural Science Foundation of China(No.52064006,52164001 and 52004072)the Guizhou Provincial Science and Technology Foundation(No.[2020]4Y044,No.[2021]292,No.GCC[2022]005 and[2021]N404)the China Scholarship Council program(202006050112)
文摘Vertical height growth of hydraulic fractures(HFs)can unexpectedly penetrate a stratigraphic interface and propagate into neighboring layers,thereby resulting in low gas-production efficiency and high risk of groundwater contamination or fault reactivation.Understanding of hydraulic fracture behavior at the interface is of pivotal importance for the successful development of layered reservoirs.In this paper,a twodimensional analytical model was developed to examine HF penetration and termination behavior at an orthogonal interface between two dissimilar materials.This model involves changes in the stress singularity ahead of the HF tip,which may alter at the formation interface due to material heterogeneity.Three critical stress conditions were considered to assess possible fracture behavior(i.e.,crossing,slippage,and opening)at the interface.Then,this model was verified by comparing its theoretical predictions to numerical simulations and three independent experiments.Good agreement with the simulation results and experimental data was observed,which shows the validity and reliability of this model.Finally,a parametric study was conducted to investigate the effects of key formation parameters(elastic modulus,Poisson’s ratio,and fracture toughness)between adjacent layers.These results indicate that the variation in the introduced parameters can limit or promote vertical HF growth by redistributing the induced normal and shear stresses at the interface.Among the three studied parameters,Poisson’s ratio has the least influence on the formation interface.When the fracture toughness and elastic modulus of the bounding layer are larger than those of the pay zone layer,the influence of fracture toughness will dominate the HF behavior at the interface;otherwise,the HF behavior will more likely be influenced by elastic modulus.
文摘Gary Snyder is a famous American poet in the 1960s.His works often reflect Zen thought,which highly influenced the Beat Generation of that time,and even the whole western society.This article attempts to discuss some of the possible aspects in which Snyder’s Zen diverts from Chinese Zen thought.To find out the answer,four of Snyder’s poetry collections were mainly consulted,as well as information about the environment that he’d been living in.The discrepancy this article will show case is three-folded:first,what Snyder pursued might be"square Zen",which is different from Chinese Zen;second,his poems integrated some ideas from Indian folklores,thus contradicting that of Zen;third,giving consideration to his western background and specific historical environment,he might misinterpret Chinese Zen thought unconsciously or intentionally.This is an area which so far no current studies about Snyder have probed into,so the results are just tentative and exploratory.
文摘The name is the unique cultural phenomenon in human society.One’sOneooOoOOOOOOOO name not only a sign used to dis⁃tinguish him/her from others,but also a mark accompanying his/her whole life.It includes much information which implies the nation’s language,history,geography,religion,and cultural tradition.Research into the names of different nationalities will help us deepen the understanding of cultures.The commonness of Chinese and British cultures determines the similarities of Chinese and Britain names,while the different historical cultures,value ideas,thinking patterns,religion,and psychology determine the dissimilarities.This paper will discuss the similarities and dissimilarities between Chinese and British names from several aspects and analyze the cultural differences reflected by Chinese and British names.