Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes usi...Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.展开更多
The unique structural and physical properties of boron carbide, which make it suitable for a wide range of applications,demands the development of low-cost and green synthesis method. In the present work, the commonly...The unique structural and physical properties of boron carbide, which make it suitable for a wide range of applications,demands the development of low-cost and green synthesis method. In the present work, the commonly available leaves of aloe vera are hydrothermally treated to form the carbon precursor for the synthesis of boron carbide. The morphological characterization reveals the porous nature of the precursor turning into a tubular structure upon boron carbide formation.The structural characterization by x-ray diffraction and other spectroscopic techniques such as Fourier transform infrared,Raman, photoluminescence and uv-visible near-infrared spectroscopy confirm the formation of boron carbide. The thermogravimetric analysis of the sample is found to exhibit good thermal stability above 500 °C. When the sample is annealed to 600 °C, boron carbide with phase purity is obtained, which is confirmed through XRD and FTIR analyses. The optical emission properties of the sample are studied through CIE plot and power spectrum. Compared with other natural precursors for boron carbide, the aloe vera is found to give a good yield above 50%.展开更多
The sluggish kinetics of Fe(Ⅱ)recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency.In this study,we for the first time use boron carbide(BC)as a green and stable promotor to enhance ...The sluggish kinetics of Fe(Ⅱ)recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency.In this study,we for the first time use boron carbide(BC)as a green and stable promotor to enhance the reaction of Fe(Ⅲ)/H_(2)O_(2) for degradation of diverse organic pollutants.Electron paramagnetic resonance analysis and chemical quenching/capturing experiments demonstrate that hydroxyl radicals(·OH)are the primary reactive species in the BC/Fe(Ⅲ)/H_(2)O_(2) system.In situ electrochemical analysis indicates that BC remarkably boosts the Fe(Ⅲ)/Fe(Ⅱ)redox cycles,where the adsorbed Fe(Ⅲ)cations were transformed to more active Fe(Ⅲ)species with a higher oxidative potential to react with H_(2)O_(2) to produce Fe(Ⅱ).Thus,the recovery of Fe(Ⅱ)from Fe(Ⅲ)is facilitated over BC surface,which enhancesOH generation via Fenton reactions.Moreover,BC exhibits outstanding reusability and stability in successive cycles and avoids the secondary pollution caused by conventional organic and metalliferous promotors.Therefore,metal-free BC boosting Fe(Ⅲ)/H_(2)O_(2) oxidation of organics provides a green and advanced strategy for water decontamination.展开更多
High velocity ballistic impact deformation behaviour of Titanium/GFRP Fiber Metal Laminates(FML)has been explored.Both single and multiple projectiles impact conditions were considered.Ti/GFRP FML targets were fabrica...High velocity ballistic impact deformation behaviour of Titanium/GFRP Fiber Metal Laminates(FML)has been explored.Both single and multiple projectiles impact conditions were considered.Ti/GFRP FML targets were fabricated with addition of 5%and 10%weight percentage of boron carbide(B_(4)C)particles.Mechanical properties of Ti/GFRP FML targets were determined as per ASTM standards.High velocity ballistic experiments were conducted using Armour Piercing Projectile(APP)of diameter 7.62 mm and velocity ranging between 350 and 450 m/s.Depth of penetration of the projectile into the target was measured.The deformation behaviour of Ti/GFRP targets with and without the presence of ceramic powder(B_(4)C)was investigated.“Ductile hole growth”failure mode was observed for pure GFRP target when subjected to single projectile impact whereas“plugging”failure mode was noted for Ti/GFRP targets.The presence of B_(4)C(5%by weight)particles has significantly improved the ballistic resistance of the Ti/GFRP FML target by offering frictional resistance to the projectile penetration.Further addition(10%by weight)of B_(4)C has reduced the ballistic performance due to agglomeration.None of the targets showed‘brittle cracking’or‘fragmentation’failures.When compared to the published results of Aluminium(Al 1100/GFRP and Al 6061/GFRP)FMLs,Ti/GFRP FML showed lesser DoP which increases its potential application to aerospace industry.展开更多
High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Amon...High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Among these alloys, magnesium is self explosive and titanium is costlier, and aluminium is most likely to replace steels. Application of aluminium or its alloys is also thought of as an appropriate replacement in defence field, especially to enhance the easiness in mobility of combat vehicles while maintaining the same standard as that of conventional armour grade steels. Hence most of the investigations have been confined to aluminium or its alloys as base material and open an era of developing the newer composite materials to address the major limitation, i.e. tribological properties. The surface composites can be fabricated by incorporating the ceramic carbides like silicon carbide, carbides of transition metals and oxides of aluminium using surface modification techniques, such as high energy laser melt treatment, high energy electron beam irradiation and thermal spray process which are based on fusion route. These techniques yield the fusion related problems, such as interfacial reaction, pin holes, shrinkage cavities or voids and other casting related defects, and pave the way to need of an efficient technique which must be based on solid state. Recently developed friction stir processing technique was used in the present investigation for surface modification of AA7075 aluminum alloy, which is an alternative to steels. In the present investigation, 160 μm sized boron carbide powder was procured and was reduced to 60 μm and 30 μm using high energy ball mill. Subsequently these powders were used to fabricate the surface composites using friction stir processing.Ballistic performance testing as per the military standard(JIS.0108.01) was carried out. In the present work, an analytical method of predicting the ballistic behavior of surface composites was developed. This method was based on energy balance, i.e., the initial energy of impact is same as that of energy absorbed by multi layers. An attempt also has been made to validate the analytical results with the experimental findings. Variation between the analytical and experimental results may be accounted due to the assumptions considering such as isotropic behavior of target and shearing area of contact as cylindrical instead of conical interface As the analytical model yields the ballistic performance in the closer proximity of experimentally obtained, it can be considered to be an approximation to evaluate the ballistic performance of targets.展开更多
This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B2O3/C/Fe powder as precursors at 1100℃. Transmission elec...This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B2O3/C/Fe powder as precursors at 1100℃. Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization. Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C, and the atomic ratio of B to C is close to 4:1. High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101]. A possible growth mechanism is also discussed.展开更多
Boron carbide (B4C) is a rhombic structure composed of icosahedra and atomic chains, which has an important application in armored materials. The application of B4C under super high pressure without failure is a hot s...Boron carbide (B4C) is a rhombic structure composed of icosahedra and atomic chains, which has an important application in armored materials. The application of B4C under super high pressure without failure is a hot spot of research. Previous studies have unmasked the essential cause of B4C failure, i.e., its structure will change subjected to impact, especially under the non-hydrostatic pressure and shear stress. However, the change of structure has not been clearly understood nor accurately determined. Here in this paper, we propose several B4C polymorphs including B4C high pressure phases with non-icosahedra, which are denoted as post-B4C and their structures are formed due to icosahedra broken and may be obtained through high pressure and high temperature (HPHT). The research of their physical properties indicates that these B4C polymorphs have outstanding mechanical and electrical properties. For instance, aP10, mC10, mP20, and oP10-B4C are conductive superhard materials. We hope that our research will enrich the cognition of high pressure structural deformation of B4C and broaden the application scope of B4C.展开更多
The significant advantage of proton therapy over other particle-based techniques is in the unique physical characteristics of the Bragg peak.It can achieve a highly conformal dose distribution and maximize the probabi...The significant advantage of proton therapy over other particle-based techniques is in the unique physical characteristics of the Bragg peak.It can achieve a highly conformal dose distribution and maximize the probability of tumor control by varying the irradiation energy.Most proton facilities use cyclotrons for fixed energy beam extraction and are equipped with degrader and collimator systems for energy modulation and emittance suppression.However,interactions between charged particles and degrader materials inevitably cause beam loss and divergence and deteriorate beam performance,which present great challenges for downstream transport and clinical treatment.In this work,we investigate a method of energy reduction by combining boron carbide and graphite in a degrader to obtain greater beam transmission at lower energy.The results demonstrate that the beam size and emittance at the exit of the combined degrader diverge less than those of multi-wedge one in the energy range of 70-160 MeV.Correspondingly,the transmission efficiency after the first dipole also shows improvements of 36.26%at 70 MeV and 70.55%at 110 MeV.As a component with a high activity level,the degrader causes additional ambient radiation during operation.Residual induced radiation even remains several hours after system shutdown.Analysis of material activation and induced radiation based on 1 h irradiation with a 400 nA beam current shows that the combined degrader has a definite advantage in shielding despite producing more secondary particles.Both radioactivity and average ambient dose equivalent are reduced by 50%compared with the multiwedge degrader at the important cooling time of 1 h.After 12 h and 24 h of cooling,the radiation levels of degraders decrease slightly due to the presence of long half-life residual nuclides.The average dose generated from the multi-wedge degrader is still 1.25 times higher than that of the combined one.展开更多
Presented herein is an experimental study on the combustion of B4C/KNO3 binary pyrotechnic system.Combustion products were tested using X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive sp...Presented herein is an experimental study on the combustion of B4C/KNO3 binary pyrotechnic system.Combustion products were tested using X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometer(EDS).According to the results of tests and CEA calculation,the combustion reaction equation was established.The flames and burning rates were recorded by a high speed camera and a spectrophotometer.The effect of B4C particle size on the thermal sensitivity of B4C/KNO3 was investigated by differential scanning calorimetry(DSC)techniques.In addition,a reliable method for calculating the flame temperature was proposed.Based on the results of experiments,the combustion reaction mechanism was briefly analyzed.The burning rate,flame temperature and thermal sensitivity of B4C/KNO3 increase with the decrease of B4C particle size.The mass ratio of B4C/KNO3 has a great effect on combustion properties.Oxidizer-rich compositions have low flame temperatures,low burning rates,and provide green light emission.The combustion reactions of fuel-rich compositions are vigorous,and the B4C/KNO3 with mass ratio of 25:75 has the highest burning rate and the highest flame temperature.展开更多
By doping titanium hydride(TiH2) into boron carbide(B4C), a series of B4C + x wt% TiH2(x = 0, 5, 10, 15, and 20)composite ceramics were obtained through spark plasma sintering(SPS). The effects of the sintering temper...By doping titanium hydride(TiH2) into boron carbide(B4C), a series of B4C + x wt% TiH2(x = 0, 5, 10, 15, and 20)composite ceramics were obtained through spark plasma sintering(SPS). The effects of the sintering temperature and the amount of TiH2 additive on the microstructure, mechanical and electrical properties of the sintered B4C-TiB2 composite ceramics were investigated. Powder mixtures of B4C with 0–20 wt% TiH2 were heated from 1400℃ to 1800℃ for 20 min under 50 MPa. The results indicated that higher sintering temperatures contributed to greater ceramic density. With increasing TiH2 content, titanium diboride(TiB2) formed between the TiH2 and B4C matrix. This effectively improved Young’s modulus and fracture toughness of the composite ceramics, significantly improving their electrical properties: the electrical conductivity reached 114.9 S·cm-1 at 1800℃ when x = 20. Optimum mechanical properties were obtained for the B4C ceramics sintered with 20 wt% TiH2, which had a relative density of 99.9±0.1%, Vickers hardness of 31.8 GPa,and fracture toughness of 8.5 MPa·m1/2. The results indicated that the doping of fine Ti particles into the B4C matrix increased the conductivity and the fracture toughness of B4C.展开更多
基金the support from the National Natural Science Foundation of China (Grant No.11972267)。
文摘Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties.
基金support from UGC-SAP (DRS, Phase Ⅲ) with Sanction order No. F.510/3/DRS-Ⅲ/2015(SAPI)UGC-MRP with F. No. 43-539/2014 (SR)FD Diary No.3668
文摘The unique structural and physical properties of boron carbide, which make it suitable for a wide range of applications,demands the development of low-cost and green synthesis method. In the present work, the commonly available leaves of aloe vera are hydrothermally treated to form the carbon precursor for the synthesis of boron carbide. The morphological characterization reveals the porous nature of the precursor turning into a tubular structure upon boron carbide formation.The structural characterization by x-ray diffraction and other spectroscopic techniques such as Fourier transform infrared,Raman, photoluminescence and uv-visible near-infrared spectroscopy confirm the formation of boron carbide. The thermogravimetric analysis of the sample is found to exhibit good thermal stability above 500 °C. When the sample is annealed to 600 °C, boron carbide with phase purity is obtained, which is confirmed through XRD and FTIR analyses. The optical emission properties of the sample are studied through CIE plot and power spectrum. Compared with other natural precursors for boron carbide, the aloe vera is found to give a good yield above 50%.
基金support to visit The University of Adelaide from the China Scholarship Council(No.201906240037).
文摘The sluggish kinetics of Fe(Ⅱ)recovery in Fenton/Fenton-like reactions significantly limits the oxidation efficiency.In this study,we for the first time use boron carbide(BC)as a green and stable promotor to enhance the reaction of Fe(Ⅲ)/H_(2)O_(2) for degradation of diverse organic pollutants.Electron paramagnetic resonance analysis and chemical quenching/capturing experiments demonstrate that hydroxyl radicals(·OH)are the primary reactive species in the BC/Fe(Ⅲ)/H_(2)O_(2) system.In situ electrochemical analysis indicates that BC remarkably boosts the Fe(Ⅲ)/Fe(Ⅱ)redox cycles,where the adsorbed Fe(Ⅲ)cations were transformed to more active Fe(Ⅲ)species with a higher oxidative potential to react with H_(2)O_(2) to produce Fe(Ⅱ).Thus,the recovery of Fe(Ⅱ)from Fe(Ⅲ)is facilitated over BC surface,which enhancesOH generation via Fenton reactions.Moreover,BC exhibits outstanding reusability and stability in successive cycles and avoids the secondary pollution caused by conventional organic and metalliferous promotors.Therefore,metal-free BC boosting Fe(Ⅲ)/H_(2)O_(2) oxidation of organics provides a green and advanced strategy for water decontamination.
基金the financial support received from the management of SSN。
文摘High velocity ballistic impact deformation behaviour of Titanium/GFRP Fiber Metal Laminates(FML)has been explored.Both single and multiple projectiles impact conditions were considered.Ti/GFRP FML targets were fabricated with addition of 5%and 10%weight percentage of boron carbide(B_(4)C)particles.Mechanical properties of Ti/GFRP FML targets were determined as per ASTM standards.High velocity ballistic experiments were conducted using Armour Piercing Projectile(APP)of diameter 7.62 mm and velocity ranging between 350 and 450 m/s.Depth of penetration of the projectile into the target was measured.The deformation behaviour of Ti/GFRP targets with and without the presence of ceramic powder(B_(4)C)was investigated.“Ductile hole growth”failure mode was observed for pure GFRP target when subjected to single projectile impact whereas“plugging”failure mode was noted for Ti/GFRP targets.The presence of B_(4)C(5%by weight)particles has significantly improved the ballistic resistance of the Ti/GFRP FML target by offering frictional resistance to the projectile penetration.Further addition(10%by weight)of B_(4)C has reduced the ballistic performance due to agglomeration.None of the targets showed‘brittle cracking’or‘fragmentation’failures.When compared to the published results of Aluminium(Al 1100/GFRP and Al 6061/GFRP)FMLs,Ti/GFRP FML showed lesser DoP which increases its potential application to aerospace industry.
基金Financial assistance from Armament research board,New Delhi,India
文摘High strength-to-weight ratio of non-ferrous alloys, such as aluminium, magnesium and titanium alloys, are considered to be possible replacement of widely accepted steels in transportation and automobile sectors. Among these alloys, magnesium is self explosive and titanium is costlier, and aluminium is most likely to replace steels. Application of aluminium or its alloys is also thought of as an appropriate replacement in defence field, especially to enhance the easiness in mobility of combat vehicles while maintaining the same standard as that of conventional armour grade steels. Hence most of the investigations have been confined to aluminium or its alloys as base material and open an era of developing the newer composite materials to address the major limitation, i.e. tribological properties. The surface composites can be fabricated by incorporating the ceramic carbides like silicon carbide, carbides of transition metals and oxides of aluminium using surface modification techniques, such as high energy laser melt treatment, high energy electron beam irradiation and thermal spray process which are based on fusion route. These techniques yield the fusion related problems, such as interfacial reaction, pin holes, shrinkage cavities or voids and other casting related defects, and pave the way to need of an efficient technique which must be based on solid state. Recently developed friction stir processing technique was used in the present investigation for surface modification of AA7075 aluminum alloy, which is an alternative to steels. In the present investigation, 160 μm sized boron carbide powder was procured and was reduced to 60 μm and 30 μm using high energy ball mill. Subsequently these powders were used to fabricate the surface composites using friction stir processing.Ballistic performance testing as per the military standard(JIS.0108.01) was carried out. In the present work, an analytical method of predicting the ballistic behavior of surface composites was developed. This method was based on energy balance, i.e., the initial energy of impact is same as that of energy absorbed by multi layers. An attempt also has been made to validate the analytical results with the experimental findings. Variation between the analytical and experimental results may be accounted due to the assumptions considering such as isotropic behavior of target and shearing area of contact as cylindrical instead of conical interface As the analytical model yields the ballistic performance in the closer proximity of experimentally obtained, it can be considered to be an approximation to evaluate the ballistic performance of targets.
基金Project supported by the National 863 (Grant No 2007AA03Z305)973 (Grant No 2007CB935503) programthe National Science Foundation of China (Grant Nos 60571045, 60620120443, Guo-JI He-Zuo)
文摘This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B2O3/C/Fe powder as precursors at 1100℃. Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization. Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C, and the atomic ratio of B to C is close to 4:1. High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101]. A possible growth mechanism is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51871114 and 12064013)the Natural Science Foundation of Jiangxi Province, China (Grant No. 20202BAB214010)+3 种基金the Research Foundation of the Education Department of Jiangxi Province, China (Grant Nos. GJJ180433 and GJJ180477)the Open Funds of the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China (Grant No. 201906)the Ganzhou Science and Technology Innovation Project, China (Grant No. 201960)the Jiangxi University of Science and Technology Scientific Research Starting Foundation, China (Grant No. jxxjbs17053).
文摘Boron carbide (B4C) is a rhombic structure composed of icosahedra and atomic chains, which has an important application in armored materials. The application of B4C under super high pressure without failure is a hot spot of research. Previous studies have unmasked the essential cause of B4C failure, i.e., its structure will change subjected to impact, especially under the non-hydrostatic pressure and shear stress. However, the change of structure has not been clearly understood nor accurately determined. Here in this paper, we propose several B4C polymorphs including B4C high pressure phases with non-icosahedra, which are denoted as post-B4C and their structures are formed due to icosahedra broken and may be obtained through high pressure and high temperature (HPHT). The research of their physical properties indicates that these B4C polymorphs have outstanding mechanical and electrical properties. For instance, aP10, mC10, mP20, and oP10-B4C are conductive superhard materials. We hope that our research will enrich the cognition of high pressure structural deformation of B4C and broaden the application scope of B4C.
基金supported in part by the National Natural Science Foundation of China (No. 52077211)
文摘The significant advantage of proton therapy over other particle-based techniques is in the unique physical characteristics of the Bragg peak.It can achieve a highly conformal dose distribution and maximize the probability of tumor control by varying the irradiation energy.Most proton facilities use cyclotrons for fixed energy beam extraction and are equipped with degrader and collimator systems for energy modulation and emittance suppression.However,interactions between charged particles and degrader materials inevitably cause beam loss and divergence and deteriorate beam performance,which present great challenges for downstream transport and clinical treatment.In this work,we investigate a method of energy reduction by combining boron carbide and graphite in a degrader to obtain greater beam transmission at lower energy.The results demonstrate that the beam size and emittance at the exit of the combined degrader diverge less than those of multi-wedge one in the energy range of 70-160 MeV.Correspondingly,the transmission efficiency after the first dipole also shows improvements of 36.26%at 70 MeV and 70.55%at 110 MeV.As a component with a high activity level,the degrader causes additional ambient radiation during operation.Residual induced radiation even remains several hours after system shutdown.Analysis of material activation and induced radiation based on 1 h irradiation with a 400 nA beam current shows that the combined degrader has a definite advantage in shielding despite producing more secondary particles.Both radioactivity and average ambient dose equivalent are reduced by 50%compared with the multiwedge degrader at the important cooling time of 1 h.After 12 h and 24 h of cooling,the radiation levels of degraders decrease slightly due to the presence of long half-life residual nuclides.The average dose generated from the multi-wedge degrader is still 1.25 times higher than that of the combined one.
基金The support for this work was provided by the National Natural Science Foundation of China(Project No.51676100).
文摘Presented herein is an experimental study on the combustion of B4C/KNO3 binary pyrotechnic system.Combustion products were tested using X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive spectrometer(EDS).According to the results of tests and CEA calculation,the combustion reaction equation was established.The flames and burning rates were recorded by a high speed camera and a spectrophotometer.The effect of B4C particle size on the thermal sensitivity of B4C/KNO3 was investigated by differential scanning calorimetry(DSC)techniques.In addition,a reliable method for calculating the flame temperature was proposed.Based on the results of experiments,the combustion reaction mechanism was briefly analyzed.The burning rate,flame temperature and thermal sensitivity of B4C/KNO3 increase with the decrease of B4C particle size.The mass ratio of B4C/KNO3 has a great effect on combustion properties.Oxidizer-rich compositions have low flame temperatures,low burning rates,and provide green light emission.The combustion reactions of fuel-rich compositions are vigorous,and the B4C/KNO3 with mass ratio of 25:75 has the highest burning rate and the highest flame temperature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704340 and 11804305)the Scientific and Technology Project in Henan Province,China(Grant No.202102210198).
文摘By doping titanium hydride(TiH2) into boron carbide(B4C), a series of B4C + x wt% TiH2(x = 0, 5, 10, 15, and 20)composite ceramics were obtained through spark plasma sintering(SPS). The effects of the sintering temperature and the amount of TiH2 additive on the microstructure, mechanical and electrical properties of the sintered B4C-TiB2 composite ceramics were investigated. Powder mixtures of B4C with 0–20 wt% TiH2 were heated from 1400℃ to 1800℃ for 20 min under 50 MPa. The results indicated that higher sintering temperatures contributed to greater ceramic density. With increasing TiH2 content, titanium diboride(TiB2) formed between the TiH2 and B4C matrix. This effectively improved Young’s modulus and fracture toughness of the composite ceramics, significantly improving their electrical properties: the electrical conductivity reached 114.9 S·cm-1 at 1800℃ when x = 20. Optimum mechanical properties were obtained for the B4C ceramics sintered with 20 wt% TiH2, which had a relative density of 99.9±0.1%, Vickers hardness of 31.8 GPa,and fracture toughness of 8.5 MPa·m1/2. The results indicated that the doping of fine Ti particles into the B4C matrix increased the conductivity and the fracture toughness of B4C.