Objective To investigate the therapeutic effectiveness of intracoronary implantation of autologous bone marrow mononuclear cells (BM-MNC) in miniswine model of reperfused myocardial infarction. Methods Sixteen miniswi...Objective To investigate the therapeutic effectiveness of intracoronary implantation of autologous bone marrow mononuclear cells (BM-MNC) in miniswine model of reperfused myocardial infarction. Methods Sixteen miniswine myocardial ischemic reperfusion injury models made by ligation of the distal one third segment of left anterior descending artery for 90 minutes were randomized into 2 groups. In BM-MNC group (n = 9), (3.54±0.90)×108 BM-MNC were intracoronary injected, and in the control group (n = 7), phosphate buffered saline was injected by the same way. Echocardiographic and hemodynamic results, vessel density, and myocardial infarction size were evaluated and compared before and 4 weeks after cell transplantation. Results In BM-MNC group, there were no differences between before and 4 weeks after transplantation in aspects of left ventricular ejection fraction (LVEF), interventricular septal thickness, left ventricular lateral and anterior septal wall thickness, cardiac output, or +dp/dtmax. In control group, LVEF, interventricular septal thickness, left ventricular lateral and anterior septal wall thickness, cardiac output, and +dp/dtmax decreased significantly 4 weeks after transplantation (P < 0.05). Left ventricular end-diastolic pressure and –dp/dtmax did not change significantly before and after cell transplantation in both groups. Capillary density in BM-MNC group was greater than that in control group [(13.39 ± 6.96)/high power field vs. (3.50 ± 1.90)/high power field, P < 0.05]. Infarction area assessed by tetrazolium red staining and the infarction percentage decreased in BM-MNC group compared with those in control group (P < 0.05). Conclusions Transplantation of BM-MNC into myocardium with ischemic reperfusion injury increases capillary density and decreases infarction area. It has significantly beneficial effect on cardiac systolic function rather than on diastolic function.展开更多
Objective To simulate and assess the clinical effect of intracoronary infusion of bone marrow mononuclear cells or peripheral endothelial progenitor cells on myocardial reperfusion injury in mini-swine model. Methods...Objective To simulate and assess the clinical effect of intracoronary infusion of bone marrow mononuclear cells or peripheral endothelial progenitor cells on myocardial reperfusion injury in mini-swine model. Methods Twenty-three mini-swine with myocardial reperfusion injury were used as designed in the study protocol. About (3.54±0.90)×10^7 bone marrow mononuclear cells (MNC group, n=9) or (1.16± 1.07)× 10^7 endothelial progenitor cells (EPC group, n=7) was infused into the affected coronary segment of the swine. The other mini-swine were infused with phosphate buffered saline as control (n=7). Echocardio- graphy and hemodynamic studies were performed before and 4 weeks after cell infusion. Myocardium infarc- tion size was calculated. Stem cell differentiation was analyzed under a transmission electromicroscope. Results Left ventricular ejection fraction dropped by 0% in EPC group, 2% in MNC group, and 10% in the control group 4 weeks after cell infusion, respectively (P〈0.05). The systolic parameters increased in MNC and EPC groups but decreased in the control group. However, the diastolic parameters demonstrated no significant change in the three groups (P〉0.05). EPC decreased total infarction size more than MNC did (1.60±0.26 cm2 vs. 3.71±1.38 cm2, P〈0.05). Undermature endothelial cells and myocytes were found under transmission electromlcroscope. Conclusions Transplantation of either MNC or EPC may be beneficial to cardiac systolic function, but might not has obvious effect on diastolic function. Intracoronary infusion of EPC might be better than MNC in controlling infarction size. Both MNC and EPC may stimulate angiogenesis, inhibit flbrogenesis, and differentiate into myocardial cells.展开更多
BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells c...BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells can be used in the treatment of acute myocardial infarction(Ml).This study aimed to investigate the effect of intravenous and epicardial transplantion of BMSCs on myocardial infarction size in a rabbit model.METHODS:A total of 60 New Zealand rabbits were randomly divided into three groups:control group,epicardium group(group Ⅰ) and ear vein group(group Ⅱ).The BMSCs were collected from the tibial plateau in group Ⅰ and group Ⅱ,cultured and labeled.In the three groups,rabbits underwent thoracotomy and ligation of the middle left anterior descending artery.The elevation of ST segment>0.2 mV lasting for 30 minutes on the lead Ⅱ and Ⅲ of electrocardiogram suggested successful introduction of myocardial infarction.Two weeks after myocardial infarction,rabbits in group Ⅰ were treated with autogenous BMSCs at the infarct region and those in group Ⅱ received intravenous transplantation of BMSCs.In the control group,rabbits were treated with PBS following thoracotomy.Four weeks after myocardial infarction,the heart was collected from all rabbits and the infarct size was calculated.The heart was cut into sections followed by HE staining and calculation of infarct size with an image system.RESULTS:In groups Ⅰ and Ⅱ,the infarct size was significantly reduced after transplantation with BMSCs when compared with the control group(P<0.05).However,there was no significant difference in the infarct size between groups Ⅰ and Ⅱ(P>0.05).CONCLUSION:Transplantation of BMSCs has therapeutic effect on Ml.Moreover,epicardial and intravenous transplantation of BMSCs has comparable therapeutic efficacy on myocardial infarction.展开更多
Objective:To investigate the feasibility of bone marrow stromal cells (BMSCs) differenti ating into cardiomyocyte like cells in heterogeneous cardiomyocytes microenvironment in vitro. Methods: Mouse GFP-BMSCs were...Objective:To investigate the feasibility of bone marrow stromal cells (BMSCs) differenti ating into cardiomyocyte like cells in heterogeneous cardiomyocytes microenvironment in vitro. Methods: Mouse GFP-BMSCs were isolated by centrifugation through a Ficoll step gradient and purified by plating culture and depletion of the non-adherent cells. Neonatal rat cardiomyocytes (CMs) were isolated by enzymatic dissociation from hearts of 1-to 2-day old Sprague-Dawley (SD) rats and differentially plated to remove fibroblasts. Mouse GFP-BMSCs were cocuhured with neonatal rat CMs through direct and indirect contact, respectively. Cardiomyogenic differentiation of BMSCs was evaluated by immunostaining with an- ti-a-actin monoclonal antibody and observing synchronous contraction with adjacent CMs by phase contrast microphotography. Results: On day 7 of cocuhure, GFP-BMSCs (CMs : BMSCs:4 : 1)attached to nonfluorescent contracting cells (rat-derived CMs) showed myotube-like formation and started to contract synchronously with adjacent cardiomyocytes. About 10% of the fluorescent GFP-BMSCs were cardiomyocyte-like cells as determined by cell morphology and positive actin staining. Conclusion;Direct cell to-cell interaction with CMs is crucial for cardiomyogenic differentiation of BMSCs in heterogeneous CMs microenvironment in vitro. This provides a novel inducing pathway for directional differentiation of cardiovascular tissue engineering seed cells.展开更多
Objective: To explore the effect of gamma irradiation on nuclear factor-kappa B in cultured bone marrow stromal cells. Methods: Immunocytochemistry, Western blot and electrophoretic mobility shift assay (EMSA) were us...Objective: To explore the effect of gamma irradiation on nuclear factor-kappa B in cultured bone marrow stromal cells. Methods: Immunocytochemistry, Western blot and electrophoretic mobility shift assay (EMSA) were used. Results: The expression of NF-kB in cultured mouse bone marrow stromal cells (BM-SCs) on the level of protein was elevated after exposure to 60Co in the dosage of 8. 0 Gy with the use of im-munocytochemistry and Western blot. The activity of nuclear factor-kappa B in cultured BMSCs was significantly increased after exposure to gamma irradiation by using EMSA. The activity peak was at the 4th h after irradiation. Conclusion: Our results suggest that the activation of nuclear factor-kappa B in the BMSCs after irradiation may be involved in the protection of BMSCs against apoptosis and in the recovery of hematopoiesis after radiation.展开更多
OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression o...OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. RESULTS: The exogenous gene could be expressed efficiently in transduced BMSCs. CONCLUSION: The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.展开更多
Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Natural...Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Naturally derived oligosaccharides have shown significant anti-osteoporotic effects.Nystose(NST),an oligosaccharide,was isolated from the roots of Morinda officinalis How.(MO).The aim of the present study was to investigate the effects of NST on bone loss in ovariectomized mice,and explore the underlying mechanism of NST in promoting differentiation of BMSCs to osteoblasts.Administration of NST(40,80 and 160 mg/kg)and the positive control of estradiol valerate(0.2 mg/kg)for 8 weeks significantly prevented bone loss induced by ovariectomy(OVX),increased the bone mass density(BMD),improved the bone microarchitecture and reduced urine calcium and deoxypyridinoline(DPD)in ovariectomized mice,while inhibited the increase of body weight without significantly affecting the uterus weight.Furthermore,we found that NST increased osteogenic differentiation,inhibited adipogenic differentiation of BMSCs in vitro,and upregulated the expression of the key proteins of BMP and Wnt/β-catenin pathways.In addition,Noggin and Dickkopf-related protein-1(DKK-1)reversed the effect of NST on osteogenic differentiation and expression of the key proteins in BMP and Wnt/β-catenin pathway.The luciferase activities and the molecular docking analysis further supported the mechanism of NST.In conclusion,these results indicating that NST can be clinically used as a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.展开更多
Objective: To investigate the therapeutic potency of recombinant human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) in a rabbit myocardial infarction model. Methods: A myocardial infarction was created by...Objective: To investigate the therapeutic potency of recombinant human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) in a rabbit myocardial infarction model. Methods: A myocardial infarction was created by the ligation of the major ventricular branch of the left coronary artery in rabbits. After myocardial infarction, the animals were randomly assigned to GM-CSF treatment group, untreated groups and sham-operated group. The rabbits of the treated group were injected into GM-CSF by subcutaneous administration, 10 μg/kg/day, once a day for 5 days. The untreated and sham-operated group received a equal saline in the same manner as treated group. Six weeks later echocardiography and haemodynamic assessment were undertaken to assesse cardiac function. The size of the infarct region of the heart were also studied. Results: The untreated group exhibited significant higher left ventricle end-diastolic pressure, higher central venous pressure, and with significant lower mean blood pressure, lower peak first derivative of left ventricle pressure (dP/dt) than the sham group. Also, Rabbits in untreated group display significant systolic dysfunction shown by the decreased ejection fraction, diastolic dysfunction shown by increasing in the ratio of E wave to A wave (E/A), and display left ventricle enlargement. However, GS-CSF singnificantly prevented heart dysfunction, left ventricle enlargement, and reduced infarct size in treatment group. Conclusion: Administration GM-CSF after cardiac infarction can improve heart function. These findings indicate the technique may be a novel and simple therapeutic method for ischemic myocardium.展开更多
Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of mini...Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.展开更多
文摘Objective To investigate the therapeutic effectiveness of intracoronary implantation of autologous bone marrow mononuclear cells (BM-MNC) in miniswine model of reperfused myocardial infarction. Methods Sixteen miniswine myocardial ischemic reperfusion injury models made by ligation of the distal one third segment of left anterior descending artery for 90 minutes were randomized into 2 groups. In BM-MNC group (n = 9), (3.54±0.90)×108 BM-MNC were intracoronary injected, and in the control group (n = 7), phosphate buffered saline was injected by the same way. Echocardiographic and hemodynamic results, vessel density, and myocardial infarction size were evaluated and compared before and 4 weeks after cell transplantation. Results In BM-MNC group, there were no differences between before and 4 weeks after transplantation in aspects of left ventricular ejection fraction (LVEF), interventricular septal thickness, left ventricular lateral and anterior septal wall thickness, cardiac output, or +dp/dtmax. In control group, LVEF, interventricular septal thickness, left ventricular lateral and anterior septal wall thickness, cardiac output, and +dp/dtmax decreased significantly 4 weeks after transplantation (P < 0.05). Left ventricular end-diastolic pressure and –dp/dtmax did not change significantly before and after cell transplantation in both groups. Capillary density in BM-MNC group was greater than that in control group [(13.39 ± 6.96)/high power field vs. (3.50 ± 1.90)/high power field, P < 0.05]. Infarction area assessed by tetrazolium red staining and the infarction percentage decreased in BM-MNC group compared with those in control group (P < 0.05). Conclusions Transplantation of BM-MNC into myocardium with ischemic reperfusion injury increases capillary density and decreases infarction area. It has significantly beneficial effect on cardiac systolic function rather than on diastolic function.
文摘Objective To simulate and assess the clinical effect of intracoronary infusion of bone marrow mononuclear cells or peripheral endothelial progenitor cells on myocardial reperfusion injury in mini-swine model. Methods Twenty-three mini-swine with myocardial reperfusion injury were used as designed in the study protocol. About (3.54±0.90)×10^7 bone marrow mononuclear cells (MNC group, n=9) or (1.16± 1.07)× 10^7 endothelial progenitor cells (EPC group, n=7) was infused into the affected coronary segment of the swine. The other mini-swine were infused with phosphate buffered saline as control (n=7). Echocardio- graphy and hemodynamic studies were performed before and 4 weeks after cell infusion. Myocardium infarc- tion size was calculated. Stem cell differentiation was analyzed under a transmission electromicroscope. Results Left ventricular ejection fraction dropped by 0% in EPC group, 2% in MNC group, and 10% in the control group 4 weeks after cell infusion, respectively (P〈0.05). The systolic parameters increased in MNC and EPC groups but decreased in the control group. However, the diastolic parameters demonstrated no significant change in the three groups (P〉0.05). EPC decreased total infarction size more than MNC did (1.60±0.26 cm2 vs. 3.71±1.38 cm2, P〈0.05). Undermature endothelial cells and myocytes were found under transmission electromlcroscope. Conclusions Transplantation of either MNC or EPC may be beneficial to cardiac systolic function, but might not has obvious effect on diastolic function. Intracoronary infusion of EPC might be better than MNC in controlling infarction size. Both MNC and EPC may stimulate angiogenesis, inhibit flbrogenesis, and differentiate into myocardial cells.
基金supported by grants from the Scientific Research Plan Project of Liaoning Province(20092250096)Scientific Research Plan Project of Dalian(2010E15SF178)
文摘BACKGROUND:Intravenous transplantation has been regarded as a most safe method in stem cell therapies.There is evidence showing the homing of bone marrow stem cells(BMSCs) into the injured sites,and thus these cells can be used in the treatment of acute myocardial infarction(Ml).This study aimed to investigate the effect of intravenous and epicardial transplantion of BMSCs on myocardial infarction size in a rabbit model.METHODS:A total of 60 New Zealand rabbits were randomly divided into three groups:control group,epicardium group(group Ⅰ) and ear vein group(group Ⅱ).The BMSCs were collected from the tibial plateau in group Ⅰ and group Ⅱ,cultured and labeled.In the three groups,rabbits underwent thoracotomy and ligation of the middle left anterior descending artery.The elevation of ST segment>0.2 mV lasting for 30 minutes on the lead Ⅱ and Ⅲ of electrocardiogram suggested successful introduction of myocardial infarction.Two weeks after myocardial infarction,rabbits in group Ⅰ were treated with autogenous BMSCs at the infarct region and those in group Ⅱ received intravenous transplantation of BMSCs.In the control group,rabbits were treated with PBS following thoracotomy.Four weeks after myocardial infarction,the heart was collected from all rabbits and the infarct size was calculated.The heart was cut into sections followed by HE staining and calculation of infarct size with an image system.RESULTS:In groups Ⅰ and Ⅱ,the infarct size was significantly reduced after transplantation with BMSCs when compared with the control group(P<0.05).However,there was no significant difference in the infarct size between groups Ⅰ and Ⅱ(P>0.05).CONCLUSION:Transplantation of BMSCs has therapeutic effect on Ml.Moreover,epicardial and intravenous transplantation of BMSCs has comparable therapeutic efficacy on myocardial infarction.
文摘Objective:To investigate the feasibility of bone marrow stromal cells (BMSCs) differenti ating into cardiomyocyte like cells in heterogeneous cardiomyocytes microenvironment in vitro. Methods: Mouse GFP-BMSCs were isolated by centrifugation through a Ficoll step gradient and purified by plating culture and depletion of the non-adherent cells. Neonatal rat cardiomyocytes (CMs) were isolated by enzymatic dissociation from hearts of 1-to 2-day old Sprague-Dawley (SD) rats and differentially plated to remove fibroblasts. Mouse GFP-BMSCs were cocuhured with neonatal rat CMs through direct and indirect contact, respectively. Cardiomyogenic differentiation of BMSCs was evaluated by immunostaining with an- ti-a-actin monoclonal antibody and observing synchronous contraction with adjacent CMs by phase contrast microphotography. Results: On day 7 of cocuhure, GFP-BMSCs (CMs : BMSCs:4 : 1)attached to nonfluorescent contracting cells (rat-derived CMs) showed myotube-like formation and started to contract synchronously with adjacent cardiomyocytes. About 10% of the fluorescent GFP-BMSCs were cardiomyocyte-like cells as determined by cell morphology and positive actin staining. Conclusion;Direct cell to-cell interaction with CMs is crucial for cardiomyogenic differentiation of BMSCs in heterogeneous CMs microenvironment in vitro. This provides a novel inducing pathway for directional differentiation of cardiovascular tissue engineering seed cells.
基金Supported by the "Ninth Five" Obligatory Budget of PLA. No. 96L045
文摘Objective: To explore the effect of gamma irradiation on nuclear factor-kappa B in cultured bone marrow stromal cells. Methods: Immunocytochemistry, Western blot and electrophoretic mobility shift assay (EMSA) were used. Results: The expression of NF-kB in cultured mouse bone marrow stromal cells (BM-SCs) on the level of protein was elevated after exposure to 60Co in the dosage of 8. 0 Gy with the use of im-munocytochemistry and Western blot. The activity of nuclear factor-kappa B in cultured BMSCs was significantly increased after exposure to gamma irradiation by using EMSA. The activity peak was at the 4th h after irradiation. Conclusion: Our results suggest that the activation of nuclear factor-kappa B in the BMSCs after irradiation may be involved in the protection of BMSCs against apoptosis and in the recovery of hematopoiesis after radiation.
文摘OBJECTIVE: To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells (BMSCs). METHODS: The marker gene, pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. RESULTS: The exogenous gene could be expressed efficiently in transduced BMSCs. CONCLUSION: The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.
基金support from the Public Platform of Medical Research Center,Academy of Chinese Medical Science,Zhejiang Chinese Medical Universitysponsored by the National Natural Science Foundation of China(81973534,U1505226)。
文摘Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Naturally derived oligosaccharides have shown significant anti-osteoporotic effects.Nystose(NST),an oligosaccharide,was isolated from the roots of Morinda officinalis How.(MO).The aim of the present study was to investigate the effects of NST on bone loss in ovariectomized mice,and explore the underlying mechanism of NST in promoting differentiation of BMSCs to osteoblasts.Administration of NST(40,80 and 160 mg/kg)and the positive control of estradiol valerate(0.2 mg/kg)for 8 weeks significantly prevented bone loss induced by ovariectomy(OVX),increased the bone mass density(BMD),improved the bone microarchitecture and reduced urine calcium and deoxypyridinoline(DPD)in ovariectomized mice,while inhibited the increase of body weight without significantly affecting the uterus weight.Furthermore,we found that NST increased osteogenic differentiation,inhibited adipogenic differentiation of BMSCs in vitro,and upregulated the expression of the key proteins of BMP and Wnt/β-catenin pathways.In addition,Noggin and Dickkopf-related protein-1(DKK-1)reversed the effect of NST on osteogenic differentiation and expression of the key proteins in BMP and Wnt/β-catenin pathway.The luciferase activities and the molecular docking analysis further supported the mechanism of NST.In conclusion,these results indicating that NST can be clinically used as a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.
文摘Objective: To investigate the therapeutic potency of recombinant human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) in a rabbit myocardial infarction model. Methods: A myocardial infarction was created by the ligation of the major ventricular branch of the left coronary artery in rabbits. After myocardial infarction, the animals were randomly assigned to GM-CSF treatment group, untreated groups and sham-operated group. The rabbits of the treated group were injected into GM-CSF by subcutaneous administration, 10 μg/kg/day, once a day for 5 days. The untreated and sham-operated group received a equal saline in the same manner as treated group. Six weeks later echocardiography and haemodynamic assessment were undertaken to assesse cardiac function. The size of the infarct region of the heart were also studied. Results: The untreated group exhibited significant higher left ventricle end-diastolic pressure, higher central venous pressure, and with significant lower mean blood pressure, lower peak first derivative of left ventricle pressure (dP/dt) than the sham group. Also, Rabbits in untreated group display significant systolic dysfunction shown by the decreased ejection fraction, diastolic dysfunction shown by increasing in the ratio of E wave to A wave (E/A), and display left ventricle enlargement. However, GS-CSF singnificantly prevented heart dysfunction, left ventricle enlargement, and reduced infarct size in treatment group. Conclusion: Administration GM-CSF after cardiac infarction can improve heart function. These findings indicate the technique may be a novel and simple therapeutic method for ischemic myocardium.
基金Supported by the National Natural Science Foundation ofChina (No. 30070224)the Key Project of the ScientificResearch Foundation for Medical Science and Public Healthof PLA(No. 01Z072)
文摘Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.