Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex proper...Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex properties, a novel adaptive control algorithm the basis of nonlinear OFS (orthonormal functional series) model is proposed. First, the hybrid model which combines OFS and Volterra series is introduced. Then, a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors. Finally, control simulations and experiments on a nonlinear process with varying time-delay are presented. A number of experimental results validate the efficiency and superiority of this algorithm.展开更多
Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) con...Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.展开更多
Propose a new degradation call admission control(DCAC)scheme, which can be used in wideband code division multiple access communication system. So-called degradation is that non-real time call has the characteristic...Propose a new degradation call admission control(DCAC)scheme, which can be used in wideband code division multiple access communication system. So-called degradation is that non-real time call has the characteristic of variable bit rate, so decreasing its bit rate can reduce the load of the system, consequently the system can admit new call which should be blocked when the system is close to full load, therefore new call's access probability increases. This paper brings forward design project and does system simulation, simulation proves that DCAC can effectively decrease calls' blocking probability and increase the total number of the on-line users.展开更多
In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitud...In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitude adjusting mechanisms, such as the lateral pulse jet, have complex impact on the airflow layer of the projectile surface caused by the thrust vector jet flow. An improved two-dimensional trajectory correction mechanism is designed based on the principle of firing mass blocks by a tailor-made propellant. The mechanical properties of the thrust force(namely the correction force) is analyzed. The trajectory correction model is established to analyze the effects of correction starting moment and correction phase angle of a thrust force on the projectile's trajectory. According to the trajectory correction scheme, an improved genetic algorithm is employed to this work. The scheme is tested in the simulation. The results show that the correction scheme is effective to reduce target dispersion and increase the precision of the impact point.展开更多
文摘Two complex properties, varying time-delay and block-oriented nonlinearity, are very common in chemical engineering processes and not easy to be controlled by routine control methods. Aimed at these two complex properties, a novel adaptive control algorithm the basis of nonlinear OFS (orthonormal functional series) model is proposed. First, the hybrid model which combines OFS and Volterra series is introduced. Then, a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors. Finally, control simulations and experiments on a nonlinear process with varying time-delay are presented. A number of experimental results validate the efficiency and superiority of this algorithm.
文摘Reduction of conservatism is one of the key and difficult problems in missile robust gain scheduling autopilot design based on multipliers.This article presents a scheme of adopting linear parameter-varying(LPV) control approach with full block multipliers to design a missile robust gain scheduling autopilot in order to eliminate conservatism.A model matching design structure with a high demand on matching precision is constructed based on the missile linear fractional transformation(LFT) model.By applying full block S-procedure and elimination lemma,a convex feasibility problem with an infinite number of constraints is formulated to satisfy robust quadratic performance specifications.Then a grid method is adopted to transform the infinite-dimensional convex feasibility problem into a solvable finite-dimensional convex feasibility problem,based on which a gain scheduling controller with linear fractional dependence on the flight Mach number and altitude is derived.Static and dynamic simulation results show the effectiveness and feasibility of the proposed scheme.
文摘Propose a new degradation call admission control(DCAC)scheme, which can be used in wideband code division multiple access communication system. So-called degradation is that non-real time call has the characteristic of variable bit rate, so decreasing its bit rate can reduce the load of the system, consequently the system can admit new call which should be blocked when the system is close to full load, therefore new call's access probability increases. This paper brings forward design project and does system simulation, simulation proves that DCAC can effectively decrease calls' blocking probability and increase the total number of the on-line users.
基金supported by the National Natural Science Foundation of China(11372142)
文摘In conventional technical trajectory correction schemes,continuous attitude adjusting mechanisms, such as canards, are inferior in terms of response time and efficiency of executing instructions. Discontinuous attitude adjusting mechanisms, such as the lateral pulse jet, have complex impact on the airflow layer of the projectile surface caused by the thrust vector jet flow. An improved two-dimensional trajectory correction mechanism is designed based on the principle of firing mass blocks by a tailor-made propellant. The mechanical properties of the thrust force(namely the correction force) is analyzed. The trajectory correction model is established to analyze the effects of correction starting moment and correction phase angle of a thrust force on the projectile's trajectory. According to the trajectory correction scheme, an improved genetic algorithm is employed to this work. The scheme is tested in the simulation. The results show that the correction scheme is effective to reduce target dispersion and increase the precision of the impact point.