Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of...Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of rice sheath blight pathogen to the biological pesticide by treating 45 strains isolated from three northeastern provinces with varying concentrations of Shenqinmycin.The effects on mycelial growth and sclerotial germination of the rice sheath blight pathogens were measured to determine the resistance levels.The results indicated that all tested strains were sensitive to Shenqinmycin,with EC50 values for Rhizoctonia solani ranging from 0.0487 mg·L^(-1) to 0.2348 mg·L^(-1),and a sensitivity baseline of 0.1292 mg·L^(-1).For Rhizoctonias oryzae-sativae,the EC50 values ranged from 0.0517 mg·L^(-1) to 0.1697 mg·L^(-1),with a sensitivity baseline of 0.1163 mg·L^(-1).Shenqinmycin had no effect on the sclerotial germination of either pathogen,suggesting its potential as an effective agent for controlling rice sheath blight.展开更多
In recent years,the prevalence of rice sheath blight caused by Rhizoctonia solani has significantly increased in Heilongjiang Province.Chemical control has become the primary control method.To cope with this,a novel m...In recent years,the prevalence of rice sheath blight caused by Rhizoctonia solani has significantly increased in Heilongjiang Province.Chemical control has become the primary control method.To cope with this,a novel mycelium growth rate method was employed to assess the toxicity of 13 fungicides,including a combination of 45%prochloraz and 125 g·mL^(-1)epoxiconazole,against R.solani.Additionally,the resistance of 99 R.solani strains to thifluzamide across various regions was also evaluated.The findings indicated that 75%trifloxystrobin-tebuconazole exhibited the most effective inhibitory effect,with an effective inhibitory medium concentration(EC50)value of 0.0101μg·mL^(-1).The EC50 values for 20%prothioconazole,125 g·mL^(-1)epoxiconazole,24%thifluzamide,and 50%hexaconazole were all less than 10μg·mL^(-1),indicating a better inhibitory effect on R.solani.The strongest synergistic effect was noted in the mixture of prochloraz and epoxiconazole at a 1:2 ratio,resulting in an EC50 value of 2.9917μg·mL^(-1),and a co-toxicity coefficient of 213.38.Among the 34 strains from Harbin City,the average EC50 value was 196.9341μg·mL^(-1)indicating the highest susceptiblility to thifluzamide.Conversely,15 strains from Shuangyashan City exhibited an average EC50 value of 364.7323μg·mL^(-1),reflecting the lowest sensitivity to thifluzamide.The sensitivity baseline EC50 value for R.solani was 253.8854μg·mL^(-1),with an overall resistance level between 0.1567 and 3.3292,indicating that the resistance level of R.solani in Heilongjiang Province remained low.Therefore,R.solani was still sensitive to thifluzamide in most areas of Heilongjiang Province,but there was a certain risk of resistance in Qitaihe City,which needed to be continuously monitored.At the same time,this study might provide a theoretical foundation for enhancing the prevention and management of the rice sheath blight.展开更多
The northem corn leaf blight is one of the most serious diseases in maize production. The research progress on etiology, generation law and control strategy, antigen identification, resistance mechanism and inheritanc...The northem corn leaf blight is one of the most serious diseases in maize production. The research progress on etiology, generation law and control strategy, antigen identification, resistance mechanism and inheritance of this disease was discussed. And the research work which should be enhanced in China was pointed out, such as mechanism of resistance inheritance, developing function marker, gene mining, screening resistance resource and dominant physiological race in different areas.展开更多
Biocontrol by Trichoderma has been studied mainly with selected isolates of T. harzianum, T. atroviride and T. asperellum, which are members of sections Pachybasium and Trichoderma. In contrast, species from section L...Biocontrol by Trichoderma has been studied mainly with selected isolates of T. harzianum, T. atroviride and T. asperellum, which are members of sections Pachybasium and Trichoderma. In contrast, species from section Longibrachiatum have only rarely been studied. On the other hand, one taxon from this section-Hypocrea jecorina (anamorph: Trichoderma reesei)-has been widely used for the production of cellulolytic and hemicellulolytic enzymes and recombinant proteins. As far as Trichoderma is concerned, molecular genetic methods and tools are most advanced in H. jecorina, and its genome has recently been fully sequenced, thus making this taxon a model organism for the genus. Here we will demonstrate that H. jecorina is able to antagonize plant pathogenic fungi in plate confrontation tests, and can protect tomato and cucumber plants against Pythium ultimum blight. Using this as a model case, we made use of available H. jecorina mutants to investigate (a) whether carbon catabolite repression via the Cre1-regulator protein has an impact on biocontrol, and (b) whether cellulase gene expression is necessary for biocontrol of P. ultimum. In the first case, plate confrontation tests and in planta experiments yielded opposite results, i.e. while a Cre1 mutant was more active in antagonization of fungi on plates, the survival rates of P. ultimum-inoculated cucumber plants was lower than with the H. jecorina wild-type strain. Mutants of H. jecorina, unable to form cellulases, were still able to antagonize fungi on plates and provided similar protection of tomatos against P. ultimum as the wild type, indicating that the pronounced biocontrol ability of H. jecorina against fungi with cellulose-containing cell-walls is not due to its high cellulolytic activity. A strain disrupted in the light-modulator gene envoy (Schmoll et al., ms submitted) exhibited in planta biocontrol activity strongly exceeding that of the wild-type strain, thereby providing a first link between Trichoderma biocontrol and light. In view of the numerous other metabolic and regulatory mutants of H. jecorina available, we suggest that this fungus should increasingly be used in basic studies on the biochemistry and genetics of biocontrol.展开更多
【目的】探究氟茚唑菌胺与苯醚甲环唑复配对水稻纹枯病室内活性及最佳混配比,进行田间药效试验验证其实际应用效果,为水稻纹枯病的防治提供新的策略。【方法】设置多个氟茚唑菌胺和苯醚甲环唑混配比,采用菌丝生长速率法进行室内毒力测定...【目的】探究氟茚唑菌胺与苯醚甲环唑复配对水稻纹枯病室内活性及最佳混配比,进行田间药效试验验证其实际应用效果,为水稻纹枯病的防治提供新的策略。【方法】设置多个氟茚唑菌胺和苯醚甲环唑混配比,采用菌丝生长速率法进行室内毒力测定,利用Wadley法计算增效系数SR,选取增效作用最显著的混配比进行田间药效试验,调查田间发病情况。【结果】氟茚唑菌胺:苯醚甲环唑以质量比1:9至9:1的配比范围混配时SR值介于0.7180~3.2735,其中复配比例为1:9时SR值达3.2735,增效作用最强。田间试验结果表明,90 g a.i./hm2的桶混处理即可与各供试化学药剂在推荐剂量下的防治效果持平,且显著优于4%井冈霉素A水剂的防效。【结论】田间用量为90 g a.i./hm2的氟茚唑菌胺与苯醚甲环唑(有效成分比为1:9)桶混处理能有效防治水稻纹枯病,氟茚唑菌胺与苯醚甲环唑复配使用在水稻纹枯病的防治中具有广阔的应用前景。展开更多
基金Supported by the Green Plant Protection Project(213010801)the Heilongjiang Provincial Key R&D Program Projects(20232X02B0502)。
文摘Rice sheath blight is one of the serious rice diseases causing economic losses worldwide.Shenqinmycin,a broad-spectrum microbial metabolite pesticide,inhibits plant pathogens.This study investigated the sensitivity of rice sheath blight pathogen to the biological pesticide by treating 45 strains isolated from three northeastern provinces with varying concentrations of Shenqinmycin.The effects on mycelial growth and sclerotial germination of the rice sheath blight pathogens were measured to determine the resistance levels.The results indicated that all tested strains were sensitive to Shenqinmycin,with EC50 values for Rhizoctonia solani ranging from 0.0487 mg·L^(-1) to 0.2348 mg·L^(-1),and a sensitivity baseline of 0.1292 mg·L^(-1).For Rhizoctonias oryzae-sativae,the EC50 values ranged from 0.0517 mg·L^(-1) to 0.1697 mg·L^(-1),with a sensitivity baseline of 0.1163 mg·L^(-1).Shenqinmycin had no effect on the sclerotial germination of either pathogen,suggesting its potential as an effective agent for controlling rice sheath blight.
基金Supported by the Green Plant Protection Project(213010801)the Heilongjiang Province Key Research and Development Plan Project(20232X02 B0502)the Natural Science Foundation of Heilongjiang Province(LH2022C022)。
文摘In recent years,the prevalence of rice sheath blight caused by Rhizoctonia solani has significantly increased in Heilongjiang Province.Chemical control has become the primary control method.To cope with this,a novel mycelium growth rate method was employed to assess the toxicity of 13 fungicides,including a combination of 45%prochloraz and 125 g·mL^(-1)epoxiconazole,against R.solani.Additionally,the resistance of 99 R.solani strains to thifluzamide across various regions was also evaluated.The findings indicated that 75%trifloxystrobin-tebuconazole exhibited the most effective inhibitory effect,with an effective inhibitory medium concentration(EC50)value of 0.0101μg·mL^(-1).The EC50 values for 20%prothioconazole,125 g·mL^(-1)epoxiconazole,24%thifluzamide,and 50%hexaconazole were all less than 10μg·mL^(-1),indicating a better inhibitory effect on R.solani.The strongest synergistic effect was noted in the mixture of prochloraz and epoxiconazole at a 1:2 ratio,resulting in an EC50 value of 2.9917μg·mL^(-1),and a co-toxicity coefficient of 213.38.Among the 34 strains from Harbin City,the average EC50 value was 196.9341μg·mL^(-1)indicating the highest susceptiblility to thifluzamide.Conversely,15 strains from Shuangyashan City exhibited an average EC50 value of 364.7323μg·mL^(-1),reflecting the lowest sensitivity to thifluzamide.The sensitivity baseline EC50 value for R.solani was 253.8854μg·mL^(-1),with an overall resistance level between 0.1567 and 3.3292,indicating that the resistance level of R.solani in Heilongjiang Province remained low.Therefore,R.solani was still sensitive to thifluzamide in most areas of Heilongjiang Province,but there was a certain risk of resistance in Qitaihe City,which needed to be continuously monitored.At the same time,this study might provide a theoretical foundation for enhancing the prevention and management of the rice sheath blight.
文摘The northem corn leaf blight is one of the most serious diseases in maize production. The research progress on etiology, generation law and control strategy, antigen identification, resistance mechanism and inheritance of this disease was discussed. And the research work which should be enhanced in China was pointed out, such as mechanism of resistance inheritance, developing function marker, gene mining, screening resistance resource and dominant physiological race in different areas.
文摘Biocontrol by Trichoderma has been studied mainly with selected isolates of T. harzianum, T. atroviride and T. asperellum, which are members of sections Pachybasium and Trichoderma. In contrast, species from section Longibrachiatum have only rarely been studied. On the other hand, one taxon from this section-Hypocrea jecorina (anamorph: Trichoderma reesei)-has been widely used for the production of cellulolytic and hemicellulolytic enzymes and recombinant proteins. As far as Trichoderma is concerned, molecular genetic methods and tools are most advanced in H. jecorina, and its genome has recently been fully sequenced, thus making this taxon a model organism for the genus. Here we will demonstrate that H. jecorina is able to antagonize plant pathogenic fungi in plate confrontation tests, and can protect tomato and cucumber plants against Pythium ultimum blight. Using this as a model case, we made use of available H. jecorina mutants to investigate (a) whether carbon catabolite repression via the Cre1-regulator protein has an impact on biocontrol, and (b) whether cellulase gene expression is necessary for biocontrol of P. ultimum. In the first case, plate confrontation tests and in planta experiments yielded opposite results, i.e. while a Cre1 mutant was more active in antagonization of fungi on plates, the survival rates of P. ultimum-inoculated cucumber plants was lower than with the H. jecorina wild-type strain. Mutants of H. jecorina, unable to form cellulases, were still able to antagonize fungi on plates and provided similar protection of tomatos against P. ultimum as the wild type, indicating that the pronounced biocontrol ability of H. jecorina against fungi with cellulose-containing cell-walls is not due to its high cellulolytic activity. A strain disrupted in the light-modulator gene envoy (Schmoll et al., ms submitted) exhibited in planta biocontrol activity strongly exceeding that of the wild-type strain, thereby providing a first link between Trichoderma biocontrol and light. In view of the numerous other metabolic and regulatory mutants of H. jecorina available, we suggest that this fungus should increasingly be used in basic studies on the biochemistry and genetics of biocontrol.
文摘【目的】探究氟茚唑菌胺与苯醚甲环唑复配对水稻纹枯病室内活性及最佳混配比,进行田间药效试验验证其实际应用效果,为水稻纹枯病的防治提供新的策略。【方法】设置多个氟茚唑菌胺和苯醚甲环唑混配比,采用菌丝生长速率法进行室内毒力测定,利用Wadley法计算增效系数SR,选取增效作用最显著的混配比进行田间药效试验,调查田间发病情况。【结果】氟茚唑菌胺:苯醚甲环唑以质量比1:9至9:1的配比范围混配时SR值介于0.7180~3.2735,其中复配比例为1:9时SR值达3.2735,增效作用最强。田间试验结果表明,90 g a.i./hm2的桶混处理即可与各供试化学药剂在推荐剂量下的防治效果持平,且显著优于4%井冈霉素A水剂的防效。【结论】田间用量为90 g a.i./hm2的氟茚唑菌胺与苯醚甲环唑(有效成分比为1:9)桶混处理能有效防治水稻纹枯病,氟茚唑菌胺与苯醚甲环唑复配使用在水稻纹枯病的防治中具有广阔的应用前景。