Formamidinium lead triiodide(FAPbI_(3))is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability.However,quite a few researches focused on the stability of the FA...Formamidinium lead triiodide(FAPbI_(3))is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability.However,quite a few researches focused on the stability of the FAPbI_(3) perovskite precursor solutions.Besides,the most efficient FAPbI_(3) layers are prepared by the spin-coating method,which is limited to the size of the device.Herein,the stability of FAPbI_(3) perovskite solution with methylammonium chloride(MACl)or cesium chloride(CsCl)additive is studied for preparing perovskite film through an upscalable blade-coating method.Each additive works well for achieving a high-quality FAPbI_(3) film,resulting in efficient carbon electrode perovskite solar cells(pero-SCs)in the ambient condition.However,the perovskite solution with MACl additive shows poor aging stability that noα-FAPbI_(3) phase is observed when the solution is aged over one week.While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pureα-FAPbI_(3) perovskite film even the solution is aged over one month.During the solution aging process,the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducingδ-phase FAPbI_(3).Whereas,replacing MACl with CsCl could effectively solve this issue.Our founding shows that there is a great need to develop a non-MACl FAPbI_(3) perovskite precursor solution for cost-effective preparation of pero-SCs.展开更多
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr...Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.展开更多
Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there...Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there is a need to develop a controllable and scalable deposition technique that can be carried out under ambient conditions. Even though the doctor-blade coating technique has been widely used to prepare PSCs, it is yet to be applied to high-efficiency PSCs under ambient conditions(RH ~45%, RT ~25 °C). In this study, we conducted blade-coating fabrication of modified high-efficiency PSCs under such conditions. We controlled the substrate temperature to ensure phase transition of perovskite and added dimethyl sulfoxide(DMSO) to the perovskite precursor solution to delay crystallization, which can facilitate the formation of uniform perovskite films by doctor-blade coating. The as-prepared perovskite films had large crystal domains measuring up to 100 μm. Solar cells prepared from these films exhibited a current density that was enhanced from 17.22 to 19.98 m A/cm^2 and an efficiency that was increased from 10.98% to 13.83%. However, the open-circuit voltage was only 0.908 V, probably due to issues with the hole-transporting layer. Subsequently, we replaced poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) with Ni O x as the hole-transporting material and then prepared higher-quality perovskite films by blade-coating under ambient conditions. The as-prepared perovskite films were preferably orientated and had large crystal domains measuring up to 200 μm;The open-circuit voltage of the resulting PSCs was enhanced from 0.908 to 1.123 V, while the efficiency increased from 13.83% to 15.34%.展开更多
All-polymer solar cells(all-PSCs)have made significant progress recently,but few studies have been conducted to investigate the lab-to-manufacturing translation from the spin-coating method to the printing process.Her...All-polymer solar cells(all-PSCs)have made significant progress recently,but few studies have been conducted to investigate the lab-to-manufacturing translation from the spin-coating method to the printing process.Here,the random copolymerization method and non-conjugated backbone approach are integrated to manipulate the morphology and photoelectric properties of the active layer for large-area printed all-PSCs.A series of non-conjugated terpolymer acceptors PYSe-TC_(6)T(x)(x=5,10,and 20,refers to the molar ratio of TC_(6)T unit)are developed by covalently introducing non-conjugated unit TC_(6)T into the PYSe host bipolymer by random copolymerization.The spin-coated PYSe-TC_(6)T(10)-based all-PSC demonstrates the best power conversion efficiency(PCE)of 13.54%,superior to the PYSe-based one(12.45%).More intriguingly,morphological studies reveal that a combination of the random polymerization and non-conjugated backbone strategy can effectively prevent the active layer from overaggregation and improve the film quality during the printing process,thereby minimizing the efficiency and technology gap between spin-coated small-area devices and blade-coated large-area devices.By directly using the same preparation condition of spin-coating,the blade-coated small-area(0.04 cm^(2))delivers a PCE of 12.83%and the large-area(1.21 cm^(2))device achieves a PCE of 11.96%with a small PCE loss.Both PCE value and PCE loss are one of the most outstanding performances of the bladecoated all-PSCs.These findings reveal that a combination of the non-conjugated flexible backbone with random copolymerization to develop non-conjugated terpolymers is an attractive design concept to smoothly realize the lab-to-manufacturing translation.展开更多
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable dep...Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas,which is an unsettled but urgent issue.In this work,a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure,considerably enhancing the coverage and smoothness of the perovskite films.The long gemini surfactant plays a distinctively synergistic role in perovskite film construction,crystallization kinetics modulation and defect passivation,leading to a certified record power conversion efficiency of 15.46%with Voc of 1.13 V and Jsc of 22.92 mA cm^(-2)for this type of modules.Importantly,all of the functional layers of the module are printed through a simple and high-speed(300 cm min^(-1))blade coating strategy in ambient atmosphere.These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.展开更多
基金Project supported by the Key Research and Development Program of China(Grant No.2020YFB1506400)the National Natural Science Foundation of China(Grant Nos.51922074,51673138,51820105003,and 22075194)+1 种基金the Tang Scholar,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘Formamidinium lead triiodide(FAPbI_(3))is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability.However,quite a few researches focused on the stability of the FAPbI_(3) perovskite precursor solutions.Besides,the most efficient FAPbI_(3) layers are prepared by the spin-coating method,which is limited to the size of the device.Herein,the stability of FAPbI_(3) perovskite solution with methylammonium chloride(MACl)or cesium chloride(CsCl)additive is studied for preparing perovskite film through an upscalable blade-coating method.Each additive works well for achieving a high-quality FAPbI_(3) film,resulting in efficient carbon electrode perovskite solar cells(pero-SCs)in the ambient condition.However,the perovskite solution with MACl additive shows poor aging stability that noα-FAPbI_(3) phase is observed when the solution is aged over one week.While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pureα-FAPbI_(3) perovskite film even the solution is aged over one month.During the solution aging process,the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducingδ-phase FAPbI_(3).Whereas,replacing MACl with CsCl could effectively solve this issue.Our founding shows that there is a great need to develop a non-MACl FAPbI_(3) perovskite precursor solution for cost-effective preparation of pero-SCs.
基金the support from the NSFC (22209131, 22005121, 21875182, and 52173023)National Key Research and Development Program of China (2022YFE0132400)+4 种基金Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002)111 project 2.0 (BP0618008)Open Fund of Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications (Changzhou University, GDRGCS2022002)Open Fund of Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (Jiangxi Normal University, KFSEMC-202201)acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231
文摘Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.
基金supported by the National Key Research and Development Project funding from the Ministry of Science and Technology of China (Grants Nos. 2016YFA0202400 and 2016YFA0202404)the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee (Grant No. KQTD2015033110182370)+1 种基金the Fundamental Research (Discipline Arrangement) Project funding from Shenzhen Science and Technology Innovation Committee (Grant No. JCYJ20170412154554048)the National Natural Science Foundation of China (Grant No. 51473139)
文摘Numerous fabrication methods have been developed for high-efficiency perovskite solar cells(PSCs). However, these are limited to spin-coating processes in a glove box and are yet to be commercialized. Therefore, there is a need to develop a controllable and scalable deposition technique that can be carried out under ambient conditions. Even though the doctor-blade coating technique has been widely used to prepare PSCs, it is yet to be applied to high-efficiency PSCs under ambient conditions(RH ~45%, RT ~25 °C). In this study, we conducted blade-coating fabrication of modified high-efficiency PSCs under such conditions. We controlled the substrate temperature to ensure phase transition of perovskite and added dimethyl sulfoxide(DMSO) to the perovskite precursor solution to delay crystallization, which can facilitate the formation of uniform perovskite films by doctor-blade coating. The as-prepared perovskite films had large crystal domains measuring up to 100 μm. Solar cells prepared from these films exhibited a current density that was enhanced from 17.22 to 19.98 m A/cm^2 and an efficiency that was increased from 10.98% to 13.83%. However, the open-circuit voltage was only 0.908 V, probably due to issues with the hole-transporting layer. Subsequently, we replaced poly(3,4-ethylenedioxythiophene) polystyrene sulfonate(PEDOT:PSS) with Ni O x as the hole-transporting material and then prepared higher-quality perovskite films by blade-coating under ambient conditions. The as-prepared perovskite films were preferably orientated and had large crystal domains measuring up to 200 μm;The open-circuit voltage of the resulting PSCs was enhanced from 0.908 to 1.123 V, while the efficiency increased from 13.83% to 15.34%.
基金the support from the National Natural Science Foundation of China(NSFC)(51973087,52173170 and 22169012)Thousand Talents Plan of Jiangxi Province(jxsq2019201004)。
文摘All-polymer solar cells(all-PSCs)have made significant progress recently,but few studies have been conducted to investigate the lab-to-manufacturing translation from the spin-coating method to the printing process.Here,the random copolymerization method and non-conjugated backbone approach are integrated to manipulate the morphology and photoelectric properties of the active layer for large-area printed all-PSCs.A series of non-conjugated terpolymer acceptors PYSe-TC_(6)T(x)(x=5,10,and 20,refers to the molar ratio of TC_(6)T unit)are developed by covalently introducing non-conjugated unit TC_(6)T into the PYSe host bipolymer by random copolymerization.The spin-coated PYSe-TC_(6)T(10)-based all-PSC demonstrates the best power conversion efficiency(PCE)of 13.54%,superior to the PYSe-based one(12.45%).More intriguingly,morphological studies reveal that a combination of the random polymerization and non-conjugated backbone strategy can effectively prevent the active layer from overaggregation and improve the film quality during the printing process,thereby minimizing the efficiency and technology gap between spin-coated small-area devices and blade-coated large-area devices.By directly using the same preparation condition of spin-coating,the blade-coated small-area(0.04 cm^(2))delivers a PCE of 12.83%and the large-area(1.21 cm^(2))device achieves a PCE of 11.96%with a small PCE loss.Both PCE value and PCE loss are one of the most outstanding performances of the bladecoated all-PSCs.These findings reveal that a combination of the non-conjugated flexible backbone with random copolymerization to develop non-conjugated terpolymers is an attractive design concept to smoothly realize the lab-to-manufacturing translation.
基金supported by the National Natural Science Foundation of China(U2001217,22261160370 and 21972006)Guangdong-Hong Kong-Macao Joint Innovation Foundation(2021A0505110003)+1 种基金Shenzhen Basic Research(JCYJ20220818101018038 and JCYJ20200109110628172)Guangdong Province Regional Joint Innovation Foundation(2020B1515120039)。
文摘Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in ambient air.However,scaling up to high-efficiency carbon-based solar modules hinges on reliable deposition of uniform defect-free perovskite films over large areas,which is an unsettled but urgent issue.In this work,a long-chain gemini surfactant is introduced into perovskite precursor ink to enforce self-assembly into a network structure,considerably enhancing the coverage and smoothness of the perovskite films.The long gemini surfactant plays a distinctively synergistic role in perovskite film construction,crystallization kinetics modulation and defect passivation,leading to a certified record power conversion efficiency of 15.46%with Voc of 1.13 V and Jsc of 22.92 mA cm^(-2)for this type of modules.Importantly,all of the functional layers of the module are printed through a simple and high-speed(300 cm min^(-1))blade coating strategy in ambient atmosphere.These results mark a significant step toward the commercialization of all-printable carbon-based perovskite solar modules.