Reservoir impoundment is related to several hydraulic engineering concerns,including irreversible valley contractions,landslides and reservoir-induced earthquakes.However,these phenomena,such as valley contractions,ar...Reservoir impoundment is related to several hydraulic engineering concerns,including irreversible valley contractions,landslides and reservoir-induced earthquakes.However,these phenomena,such as valley contractions,are hardly to be explained by the conventional method.The scientific understanding of water effects during impoundment and their hazards to hydraulic structure are needed.The effective stress law for fissured rock masses is introduced in the elasto-plastic model employing the Drucker-Prager criterion and implemented in the three dimension(3D)nonlinear finite element method(FEM)program Three-dimensional FINite Element(TFINE).The slope deforms towards river-way during impoundment since the increasing pore pressure in fissures changes stress state and leads to additional plastic deformation in the rock materials.The value of Biot coefficient and the influence of water on rock materials are discussed in detail.Thus,the mechanism of slope deformation during the impoundment of Jinping-I arch dam is revealed,and the deformation is accurately measured.The application of the effective stress law provides a method to consider stress assessment,deformation evaluation and stability estimate of hydraulic structures during the impoundment process.This is a beneficial exploration and an improvement of hydraulic engineering design.展开更多
借助Biot-Savart定律和二维涡度方程以及美国国家环境预报中心的数据资料,分析了海陆分布的下垫面热力差异与南海中北部低空急流发生和发展的关系。分析结果表明:南海中北部的低空急流由秋季出现在海陆交界处的偏东强风带南移加强而致,...借助Biot-Savart定律和二维涡度方程以及美国国家环境预报中心的数据资料,分析了海陆分布的下垫面热力差异与南海中北部低空急流发生和发展的关系。分析结果表明:南海中北部的低空急流由秋季出现在海陆交界处的偏东强风带南移加强而致,最大风速层出现在925 h Pa附近,其形成与海陆热力差异增大有关。进入秋季后,由于太阳辐射的季节变化及北下冷空气的双重作用,东亚大陆近地层的温度下降迅速,而南海洋面温度变化极小,南北温差加剧。两地近地层温度的相对变化,加大了大气上升和下沉运动,使得东亚大陆负相对涡度及南海地区的正相对涡度均得以增强。由Biot-Savart定律可知,东亚大陆和南海地区之间相对涡度通量的加大必将于南海中北部对流层低层诱导出强的辐合风速,形成带状偏东风急流。由于南海南部的涡通量大于东亚大陆地区,因此南海南部高温正涡中心所诱导出的水平速度是构成南海中北部低空急流的最主要分量,而来自东亚大陆低温负涡中心的贡献居次。展开更多
基金Projects(51323014,51479097,51279086)supported by the National Natural Science Foundation of ChinaProject(2016-KY-2)supported by the State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘Reservoir impoundment is related to several hydraulic engineering concerns,including irreversible valley contractions,landslides and reservoir-induced earthquakes.However,these phenomena,such as valley contractions,are hardly to be explained by the conventional method.The scientific understanding of water effects during impoundment and their hazards to hydraulic structure are needed.The effective stress law for fissured rock masses is introduced in the elasto-plastic model employing the Drucker-Prager criterion and implemented in the three dimension(3D)nonlinear finite element method(FEM)program Three-dimensional FINite Element(TFINE).The slope deforms towards river-way during impoundment since the increasing pore pressure in fissures changes stress state and leads to additional plastic deformation in the rock materials.The value of Biot coefficient and the influence of water on rock materials are discussed in detail.Thus,the mechanism of slope deformation during the impoundment of Jinping-I arch dam is revealed,and the deformation is accurately measured.The application of the effective stress law provides a method to consider stress assessment,deformation evaluation and stability estimate of hydraulic structures during the impoundment process.This is a beneficial exploration and an improvement of hydraulic engineering design.
文摘借助Biot-Savart定律和二维涡度方程以及美国国家环境预报中心的数据资料,分析了海陆分布的下垫面热力差异与南海中北部低空急流发生和发展的关系。分析结果表明:南海中北部的低空急流由秋季出现在海陆交界处的偏东强风带南移加强而致,最大风速层出现在925 h Pa附近,其形成与海陆热力差异增大有关。进入秋季后,由于太阳辐射的季节变化及北下冷空气的双重作用,东亚大陆近地层的温度下降迅速,而南海洋面温度变化极小,南北温差加剧。两地近地层温度的相对变化,加大了大气上升和下沉运动,使得东亚大陆负相对涡度及南海地区的正相对涡度均得以增强。由Biot-Savart定律可知,东亚大陆和南海地区之间相对涡度通量的加大必将于南海中北部对流层低层诱导出强的辐合风速,形成带状偏东风急流。由于南海南部的涡通量大于东亚大陆地区,因此南海南部高温正涡中心所诱导出的水平速度是构成南海中北部低空急流的最主要分量,而来自东亚大陆低温负涡中心的贡献居次。