In the Ethiopian highlands, communal grazing lands are one of the major land uses, and are source of livelihood for the rural people. Free and uncontrolled grazing in the communal grazing lands is the dominant grazing...In the Ethiopian highlands, communal grazing lands are one of the major land uses, and are source of livelihood for the rural people. Free and uncontrolled grazing in the communal grazing lands is the dominant grazing system. The traditional uncontrolled and free grazing system has caused severe degradation of the grazing lands. As a result, communities have started to establish exclosures and support the restoration of degraded communal grazing lands. Studies have shown that exclosures are effective to restoring degraded communal grazing lands and improving ecosystem services. However, studies that investigate the changes in aboveground biomass following the establishment of exclosures and compare it with fuelwood demand of the beneficiaries in our study area is lacking. Therefore, our study aimed at:(1) quantifying yearly biomass accumulation in exclosures and compare it to fuelwood demand of households that manage the exclosures;(2) assessing household energy sources and their consumption levels. To monitor changes in biomass production with over time, replicated(n = 3) 5 and10 year-old exclosures were sampled. To investigate fuelwood sources and consumption patterns, household surveys, key informant interviews and focus group discussion were conducted. Our results demonstrated that total biomass production increased with exclosure age. In both exclosure, biomass production from Vachellia etbaica was significantly(p \ 0.05) greater than that from Euclea.racemosa. Average daily fuelwood consumption per person was(0.63 ± 0.2) kg day^(-1). This means that the total biomass(27.5 Mg year^(-1)) obtained from 114.6 ha of exclosures covers only 9.4% of yearly fuelwood demand of the residents who manage the sampled exclosures. Nearly all respondents(95%) confirmed that they travel more than10 km day^(-1) to gather fuelwood from surrounding degraded forest patches. We recommend plantings of fast growing native tree species within exclosures and around homesteads to provide a sustainable fuelwood supply and using improved stoves to address the problem of fuelwood shortage. District agricultural offices could provide seedlings of native plant species, while communities provide unpaid labour for planting and managing plantations.展开更多
Forest biomass resources are available in enormous quantities in China. The development of forest biomass briquetting densification fuel, which has a high calorific value, can ease the energy shortage in China. But th...Forest biomass resources are available in enormous quantities in China. The development of forest biomass briquetting densification fuel, which has a high calorific value, can ease the energy shortage in China. But the molding technology is still at the primary stage with many questions unresolved, such as unequal distribution of resources, imperfect technology and an inadequate mechanism of market supply and demand. There are no consistent production and quality standards to refer to, which seriously hinder the industrialization of biomass molding technology. Hence, it is imperative to speed up the formulation of production standards of biomass briquetting densification fuel which not only conform to international standards, but are in accordance with national condi- tions in China. Drawing on the standards of biomass briquetting densification fuel in Europe, a standard system should be concerned with raw material collection, transport and storage of the end products, terminology, denomination and classification of molding equipment, as well as with technical conditions, testing methods, safety and environmental protection. The establishment of a stan- dard system is useful for the development of a healthy, orderly and sustainable biomass fuel industry.展开更多
Owing to their acidity,oxidizing ability and redox reversibility,molybdovanadophosphoric heteropolyacids(H_(n+3)PMo_(12-n)VnO40,abbreviated as PMo_(12-n)Vn) were employed as electron transfer carriers for coupling bio...Owing to their acidity,oxidizing ability and redox reversibility,molybdovanadophosphoric heteropolyacids(H_(n+3)PMo_(12-n)VnO40,abbreviated as PMo_(12-n)Vn) were employed as electron transfer carriers for coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion.In this novel coupled process,PMo_(12-n)Vn pretreatment that causes deconstruction of cell wall structure with PMo_(12-n)Vn being simultaneously reduced can be considered as the "charging" process.The reduced PMo_(12-n)Vn are further re-oxidized with release of electrons in a liquid flow fuel cell(LFFC) to generate electricity is the "discharging" process.Several Keggin-type PMo_(12-n)Vn with different degree of vanadium substitution(DSV, namely n) were prepared.Compared to Keggin-type phosphomolybdic acid(PMo_(12)),PMo_(12-n)Vn(n=1-6) showed higher oxidizing ability but poorer redox reversibility.The cellulose enzymatic digestibility of PMo_(12-n)Vn pretreated wheat straw generally decreased with increase in DSV, but xylan enzymatic digestibility generally increased with DSV.PMo_(12) pretreatment of wheat straw at 120℃ obtained the highest enzymatic glucan conversion(EGC) reaching 95%,followed by PMo11V1 pretreatment(85%).Discharging of the reduced heteropolyacids in LFFC showed that vanadium substitution could improve the maximum output power density(Pmax).The highest Pmax was obtained by PMo9 V3(44.7 mW/cm^(2)) when FeCl_(3) was used as a cathode electron carrier,while PMo_(12) achieved the lowest Pmax(27.4 mW/cm^(2)).All the heteropolyacids showed good electrode Faraday efficiency(>95%) and cell discharging efficiency(>93%).The energy efficiency of the coupled process based on the heat values of the products and generated electric energy was in the range of 18%-25% depending on DSV.PMo_(12) and PMo11V1 seem to be the most suitable heteropolyacids to mediate the coupled process.展开更多
Co-gasification of coal and biomass is emerging as potential clean fuel technology to achieve high thermodynamic efficiency with relatively low CO2 emission. The coal and biomass have been exclusively gasified more th...Co-gasification of coal and biomass is emerging as potential clean fuel technology to achieve high thermodynamic efficiency with relatively low CO2 emission. The coal and biomass have been exclusively gasified more than a century to obtain gas–liquid fuels and the production of chemicals. Co-gasification has higher efficiency than the solitary coal gasification because the cellulose, hemicellulose and lignin content of biomass help to ignite and enhance the rate of gasification. It is suggested that the extensive research on carbon reactivity pattern, heat release, reaction kinetics, etc. may support to reduce the uncertainties in the co-gasification performance of coal and biomass blends, particularly in India. The prospects of co-gasification technology in Indian context have been discussed considering the abundance of varieties of coal and biomass. The suitability of existing gasifier procedures and their limitations with operating parameters like temperature, residence time, density optimisation, feed rate, agglomeration intensity, the tar formation and techno-economics involved are described. Also, this paper reviews the research highlights of the history of co-gasification and the advancement in upcoming challenges like a design of gasifier, access and preparation of biomass, disposal of residue, environmental concerns and reassurance to the operators for execution of large and small-scale projects.展开更多
Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without...Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co-or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li-S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction(oxygen reduction and evolution reactions, hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer.展开更多
基金financially supported by VLIRfunded project ‘Forest Rehabilitation through Natural Regeneration’DAAD
文摘In the Ethiopian highlands, communal grazing lands are one of the major land uses, and are source of livelihood for the rural people. Free and uncontrolled grazing in the communal grazing lands is the dominant grazing system. The traditional uncontrolled and free grazing system has caused severe degradation of the grazing lands. As a result, communities have started to establish exclosures and support the restoration of degraded communal grazing lands. Studies have shown that exclosures are effective to restoring degraded communal grazing lands and improving ecosystem services. However, studies that investigate the changes in aboveground biomass following the establishment of exclosures and compare it with fuelwood demand of the beneficiaries in our study area is lacking. Therefore, our study aimed at:(1) quantifying yearly biomass accumulation in exclosures and compare it to fuelwood demand of households that manage the exclosures;(2) assessing household energy sources and their consumption levels. To monitor changes in biomass production with over time, replicated(n = 3) 5 and10 year-old exclosures were sampled. To investigate fuelwood sources and consumption patterns, household surveys, key informant interviews and focus group discussion were conducted. Our results demonstrated that total biomass production increased with exclosure age. In both exclosure, biomass production from Vachellia etbaica was significantly(p \ 0.05) greater than that from Euclea.racemosa. Average daily fuelwood consumption per person was(0.63 ± 0.2) kg day^(-1). This means that the total biomass(27.5 Mg year^(-1)) obtained from 114.6 ha of exclosures covers only 9.4% of yearly fuelwood demand of the residents who manage the sampled exclosures. Nearly all respondents(95%) confirmed that they travel more than10 km day^(-1) to gather fuelwood from surrounding degraded forest patches. We recommend plantings of fast growing native tree species within exclosures and around homesteads to provide a sustainable fuelwood supply and using improved stoves to address the problem of fuelwood shortage. District agricultural offices could provide seedlings of native plant species, while communities provide unpaid labour for planting and managing plantations.
基金supported by the Forestry Industrial Standard:Forest Biomass Briquetting Densification Fuel(No.2010-LY-125)the General Technical Specification of Forest Biomass Briquetting Densification Fuel Stove(No.2010-LY-124)the National Featured Major Construction Project(No.TS10040)
文摘Forest biomass resources are available in enormous quantities in China. The development of forest biomass briquetting densification fuel, which has a high calorific value, can ease the energy shortage in China. But the molding technology is still at the primary stage with many questions unresolved, such as unequal distribution of resources, imperfect technology and an inadequate mechanism of market supply and demand. There are no consistent production and quality standards to refer to, which seriously hinder the industrialization of biomass molding technology. Hence, it is imperative to speed up the formulation of production standards of biomass briquetting densification fuel which not only conform to international standards, but are in accordance with national condi- tions in China. Drawing on the standards of biomass briquetting densification fuel in Europe, a standard system should be concerned with raw material collection, transport and storage of the end products, terminology, denomination and classification of molding equipment, as well as with technical conditions, testing methods, safety and environmental protection. The establishment of a stan- dard system is useful for the development of a healthy, orderly and sustainable biomass fuel industry.
基金supported by the National Key Research and Development Program of China(2018YFA0902200)the National Natural Science Foundation of China(No.21878176)。
文摘Owing to their acidity,oxidizing ability and redox reversibility,molybdovanadophosphoric heteropolyacids(H_(n+3)PMo_(12-n)VnO40,abbreviated as PMo_(12-n)Vn) were employed as electron transfer carriers for coupling biomass pretreatment for enzymatic hydrolysis and direct biomass-to-electricity conversion.In this novel coupled process,PMo_(12-n)Vn pretreatment that causes deconstruction of cell wall structure with PMo_(12-n)Vn being simultaneously reduced can be considered as the "charging" process.The reduced PMo_(12-n)Vn are further re-oxidized with release of electrons in a liquid flow fuel cell(LFFC) to generate electricity is the "discharging" process.Several Keggin-type PMo_(12-n)Vn with different degree of vanadium substitution(DSV, namely n) were prepared.Compared to Keggin-type phosphomolybdic acid(PMo_(12)),PMo_(12-n)Vn(n=1-6) showed higher oxidizing ability but poorer redox reversibility.The cellulose enzymatic digestibility of PMo_(12-n)Vn pretreated wheat straw generally decreased with increase in DSV, but xylan enzymatic digestibility generally increased with DSV.PMo_(12) pretreatment of wheat straw at 120℃ obtained the highest enzymatic glucan conversion(EGC) reaching 95%,followed by PMo11V1 pretreatment(85%).Discharging of the reduced heteropolyacids in LFFC showed that vanadium substitution could improve the maximum output power density(Pmax).The highest Pmax was obtained by PMo9 V3(44.7 mW/cm^(2)) when FeCl_(3) was used as a cathode electron carrier,while PMo_(12) achieved the lowest Pmax(27.4 mW/cm^(2)).All the heteropolyacids showed good electrode Faraday efficiency(>95%) and cell discharging efficiency(>93%).The energy efficiency of the coupled process based on the heat values of the products and generated electric energy was in the range of 18%-25% depending on DSV.PMo_(12) and PMo11V1 seem to be the most suitable heteropolyacids to mediate the coupled process.
基金funding agencies for grant-in-aid S&T projects such as 11th and 12th five-year plan projects of CSIR for co-gasification and multi-feed gasification project of DRDO under which research has been carried out
文摘Co-gasification of coal and biomass is emerging as potential clean fuel technology to achieve high thermodynamic efficiency with relatively low CO2 emission. The coal and biomass have been exclusively gasified more than a century to obtain gas–liquid fuels and the production of chemicals. Co-gasification has higher efficiency than the solitary coal gasification because the cellulose, hemicellulose and lignin content of biomass help to ignite and enhance the rate of gasification. It is suggested that the extensive research on carbon reactivity pattern, heat release, reaction kinetics, etc. may support to reduce the uncertainties in the co-gasification performance of coal and biomass blends, particularly in India. The prospects of co-gasification technology in Indian context have been discussed considering the abundance of varieties of coal and biomass. The suitability of existing gasifier procedures and their limitations with operating parameters like temperature, residence time, density optimisation, feed rate, agglomeration intensity, the tar formation and techno-economics involved are described. Also, this paper reviews the research highlights of the history of co-gasification and the advancement in upcoming challenges like a design of gasifier, access and preparation of biomass, disposal of residue, environmental concerns and reassurance to the operators for execution of large and small-scale projects.
基金the support from the USDA National Institute of Food and Agriculture, HSI Collaboration:Integrating Food Science/Engineering and Education Network(IFSEEN,award number: 2015-3842224059)the support from the NMSU Agricultural Experiment Station Graduate Research Award
文摘Biomass derived porous nanostructured nitrogen doped carbon(PNC) has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co-or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li-S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction(oxygen reduction and evolution reactions, hydrogen evolution reaction) are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer.