期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Development of slope mass rating system using K-means and fuzzy c-means clustering algorithms 被引量:1
1
作者 Jalali Zakaria 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期959-966,共8页
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien... Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions. 展开更多
关键词 SMR based on continuous functions Slope stability analysis k-means and FCM clustering algorithms Validation of clustering algorithms Sangan iron ore mines
在线阅读 下载PDF
Similarity matrix-based K-means algorithm for text clustering
2
作者 曹奇敏 郭巧 吴向华 《Journal of Beijing Institute of Technology》 EI CAS 2015年第4期566-572,共7页
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo... K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable. 展开更多
关键词 text clustering k-means algorithm similarity matrix F-MEASURE
在线阅读 下载PDF
An Improved K-Means Algorithm Based on Initial Clustering Center Optimization
3
作者 LI Taihao NAREN Tuya +2 位作者 ZHOU Jianshe REN Fuji LIU Shupeng 《ZTE Communications》 2017年第B12期43-46,共4页
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ... The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm. 展开更多
关键词 clustering k-means algorithm initial clustering center
在线阅读 下载PDF
Distance function selection in several clustering algorithms
4
作者 LUYu 《Journal of Chongqing University》 CAS 2004年第1期47-50,共4页
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical... Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts. 展开更多
关键词 distance function clustering algorithms k-means DENDROGRAM data mining
在线阅读 下载PDF
Machine Learning-Based Hybrid SSO-MA with Optimized Secure Link State Routing Protocol in Manet
5
作者 Varsha Ashok Khandekar Praveen Gupta 《China Communications》 2025年第3期164-180,共17页
A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANE... A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANET security,network longevity,and energy efficiency.Hence,selecting an appropriate cluster.The cluster’s head further boosts the network’s energy effectiveness.As a result,a Hybrid Swallow Swarm Optimisation-Memetic Algorithm(SSO-MA)is suggested to develop the energy efficiency&of the MANET network.Then,to secure the network Abnormality Detection System(ADS)is proposed.The MATLAB-2021a platform is used to implement the suggested technique and conduct the analysis.In terms of network performance,the suggested model outperforms the current Genetic Algorithm,Optimised Link State Routing protocol,and Particle Swarm Optimisation techniques.The performance of the model has a minimum delay in the range of 0.82 seconds and a Packet Delivery Ratio(PDR)of 99.82%.Hence,the validation shows that the Hybrid SSO-MA strategy is superior to the other approaches in terms of efficiency. 展开更多
关键词 attack detection system cluster head selection clustering mobile Ad-hoc network soft k-means SSO-MA optimization algorithm
在线阅读 下载PDF
Wind power time series simulation model based on typical daily output processes and Markov algorithm 被引量:3
6
作者 Zhihui Cong Yuecong Yu +1 位作者 Linyan Li Jie Yan 《Global Energy Interconnection》 EI CAS CSCD 2022年第1期44-54,共11页
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe... The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves. 展开更多
关键词 Wind power Time series Typical daily output processes Markov algorithm Modified k-means clustering algorithm
在线阅读 下载PDF
基于模糊支持向量机的变压器故障诊断 被引量:13
7
作者 肖燕彩 张清 《北京交通大学学报》 CAS CSCD 北大核心 2012年第1期117-121,共5页
针对支持向量机对训练样本内的噪声和孤立点比较敏感,影响了支持向量机分类性能的弱点,利用模糊支持向量机的学习方法,构建了变压器故障诊断模型.采取一种基于二叉树的多分类方法,使用模糊C均值聚类算法求取模糊支持向量机的模糊隶属度... 针对支持向量机对训练样本内的噪声和孤立点比较敏感,影响了支持向量机分类性能的弱点,利用模糊支持向量机的学习方法,构建了变压器故障诊断模型.采取一种基于二叉树的多分类方法,使用模糊C均值聚类算法求取模糊支持向量机的模糊隶属度,采用径向基核函数,并利用遗传算法对模糊支持向量机的参数进行寻优.实验结果表明,基于二叉数的模糊支持向量机模型相比BP神经网络、支持向量机有更高的诊断准确率,基于二叉树模糊支持向量机的变压器故障诊断方法是可行的. 展开更多
关键词 模糊支持向量机 二叉树 故障诊断 模糊C均值聚类算法 遗传优化 变压器
在线阅读 下载PDF
基于蚁群K均值聚类算法的边坡稳定性分析 被引量:5
8
作者 刘星 毕奇龙 郑付刚 《水电能源科学》 北大核心 2010年第8期108-109,169,共3页
针对岩石边坡稳定分析中常规聚类算法存在收敛速度慢、易陷入局部最优的局限性,基于蚁群信息素的K均值聚类法,提出一种解决边坡稳定性的新方法,分析了三峡库区36个边坡数据资料,并结合工程类比综合判断了边坡的稳定状态。结果表明,该法... 针对岩石边坡稳定分析中常规聚类算法存在收敛速度慢、易陷入局部最优的局限性,基于蚁群信息素的K均值聚类法,提出一种解决边坡稳定性的新方法,分析了三峡库区36个边坡数据资料,并结合工程类比综合判断了边坡的稳定状态。结果表明,该法的聚类效果优于常规聚类法,计算效率高,为边坡稳定性分级的聚类分析评价提供了新途径。 展开更多
关键词 蚁群 均值聚类算法 边坡稳定性分析 clustering algorithm k-means Ant Based Slope Stability 边坡稳定性分级 聚类法 边坡稳定分析 综合判断 稳定状态 数据资料 收敛速度 三峡库区 局部最优 计算效率 工程类比 分析评价
在线阅读 下载PDF
基于递推质心算法的二元传感器网络分布式目标跟踪 被引量:1
9
作者 周红波 万福 丁敬校 《电光与控制》 北大核心 2014年第2期28-31,共4页
传感器网络的一个重要应用方向是目标定位与跟踪。为了减少通信消耗,二元传感器是一个很好的选择。在递推质心算法和动态分簇结构的基础上提出了一种分布式递推质心算法,并将其应用到二元传感器网络分布式目标跟踪中。计算机仿真结果表... 传感器网络的一个重要应用方向是目标定位与跟踪。为了减少通信消耗,二元传感器是一个很好的选择。在递推质心算法和动态分簇结构的基础上提出了一种分布式递推质心算法,并将其应用到二元传感器网络分布式目标跟踪中。计算机仿真结果表明,该算法能够有效地对目标进行定位跟踪,并能够在节点密度大、节点探测半径大和采样周期小的情况下减少能量消耗和计算量,从而延长网络使用寿命。 展开更多
关键词 传感器网络 目标跟踪 二元传感器 质心算法 动态分簇
在线阅读 下载PDF
一个有效的彩色图像分割方法
10
作者 孙挺 王新社 +1 位作者 耿国华 周明全 《微电子学与计算机》 CSCD 北大核心 2009年第3期232-235,共4页
提出了一种基于二叉树结构的彩色图像分割方法,首先对待分割图像采用最优阈值化方法获取R,G,B三个颜色空间的最佳阈值,然后通过构造自适用二叉树进行一次粗分割提取目标区域,最后采用C-均值聚类算法对二叉树的每个叶子节点进行精确分割... 提出了一种基于二叉树结构的彩色图像分割方法,首先对待分割图像采用最优阈值化方法获取R,G,B三个颜色空间的最佳阈值,然后通过构造自适用二叉树进行一次粗分割提取目标区域,最后采用C-均值聚类算法对二叉树的每个叶子节点进行精确分割.实验表明,该算法可以在保留原图像中大部分的信息的基础上,对目标物体进行有效的分割. 展开更多
关键词 彩色图像分割 最优阈值化 二叉树 聚类算法
在线阅读 下载PDF
改进的二进制人工蜂群动态图像聚类算法 被引量:1
11
作者 孙越泓 丁亚英 武婷婷 《南京邮电大学学报(自然科学版)》 北大核心 2017年第5期19-24,共6页
文中提出一种改进的二进制人工蜂群算法用于图像的动态聚类。该算法用了变化更多的候选解产生方式,以提高算法的全局搜索能力;增加了一个局部搜索阶段,以提高算法的局部寻优能力。在4个测试图像上的数值实验表明,与原始的二进制人工蜂... 文中提出一种改进的二进制人工蜂群算法用于图像的动态聚类。该算法用了变化更多的候选解产生方式,以提高算法的全局搜索能力;增加了一个局部搜索阶段,以提高算法的局部寻优能力。在4个测试图像上的数值实验表明,与原始的二进制人工蜂群算法相比,文中算法在聚类有效性指标值、动态聚类数目以及聚类结果上均有明显改进。 展开更多
关键词 二进制人工蜂群算法 动态聚类 局部寻优 全局搜索
在线阅读 下载PDF
基于二跳信息的分簇算法 被引量:1
12
作者 方军荣 刘三阳 《现代电子技术》 2008年第1期7-9,共3页
对于低功耗自组织的无线传感器网络,其路由协议和拓扑控制受到了很多学者的关注,且已成为国际的研究热点。在分析了LEACH,FSR算法的基础上,提出了一种基于二跳信息的分簇算法,以有效提高网络生命期。着重对算法的设计思想和工作过程,包... 对于低功耗自组织的无线传感器网络,其路由协议和拓扑控制受到了很多学者的关注,且已成为国际的研究热点。在分析了LEACH,FSR算法的基础上,提出了一种基于二跳信息的分簇算法,以有效提高网络生命期。着重对算法的设计思想和工作过程,包括簇首选择与簇建立,簇成员通信等进行了分析和论述。仿真结果表明本文中的算法对于LEALCH能有效提高网络生命期。 展开更多
关键词 分簇算法 无线传感器网络 二跳 多跳 系统寿命 生成树
在线阅读 下载PDF
基于改进YOLOv3模型的侧扫声纳沉船目标检测 被引量:1
13
作者 汤寓麟 张卫东 +2 位作者 李凡 李厚朴 纪兵 《海军工程大学学报》 CAS 北大核心 2022年第3期62-67,共6页
针对使用Faster R-CNN模型进行侧扫声纳图像沉船目标检测存在耗时长、效率低以及小目标漏警率高等问题,引入YOLOv3模型并结合侧扫声纳沉船图像数据集特点对模型进行了改进。首先,进行浅层特征融合的多尺度训练,从而增加沉船目标浅层特... 针对使用Faster R-CNN模型进行侧扫声纳图像沉船目标检测存在耗时长、效率低以及小目标漏警率高等问题,引入YOLOv3模型并结合侧扫声纳沉船图像数据集特点对模型进行了改进。首先,进行浅层特征融合的多尺度训练,从而增加沉船目标浅层特征在检测中所占比重;然后,使用K-means聚类算法重新设置先验框参数及大小,提高小目标检测精度;最后,采用二分类交叉熵函数改进YOLOv3算法中的损失函数,提高模型的收敛速度和泛化能力。实验结果表明:相比Faster R-CNN模型和传统YOLOv3模型,改进YOLOv3模型的AP值达到89.18%,分别提高了1.46%和0.57%;调和平均值F1达到89.08%,分别提高了2.33%和1.04%;检测图片耗时时间为Faster R-CNN模型的3/50,极大地提高了检测效率。该研究结果验证了改进的YOLOv3模型具有更高的检测精度和效率,对海底沉船搜救具有一定的实际指导意义。 展开更多
关键词 侧扫声纳沉船目标 改进的YOLOv3模型 浅层特征融合 k-means聚类算法 二分类交叉熵
在线阅读 下载PDF
Cruise missile multiple routes planning based on hybrid particle swarm optimization 被引量:1
14
作者 李帆 郝博 +1 位作者 赵建辉 薛蕾 《Journal of Beijing Institute of Technology》 EI CAS 2013年第3期354-360,共7页
In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to div... In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements. 展开更多
关键词 HPSO algorithm multiple routes planning PSO SA NICHE k-means clustering
在线阅读 下载PDF
基于改进的SVD算法和二分K-均值聚类算法的协同过滤算法 被引量:3
15
作者 过金超 杨继纲 《轻工学报》 CAS 2020年第4期88-95,共8页
针对传统的协同过滤算法存在稀疏性较大和扩展性较差的问题,提出了基于改进的奇异值分解(SVD)算法和二分K-均值聚类算法的协同过滤算法.该算法首先利用改进的SVD算法对稀疏的用户-项目评分矩阵进行降维,获得用户隐含特征矩阵,然后运用二... 针对传统的协同过滤算法存在稀疏性较大和扩展性较差的问题,提出了基于改进的奇异值分解(SVD)算法和二分K-均值聚类算法的协同过滤算法.该算法首先利用改进的SVD算法对稀疏的用户-项目评分矩阵进行降维,获得用户隐含特征矩阵,然后运用二分K-均值聚类算法对相似用户进行聚类来提升算法的可扩展性,最后利用最近邻居集的评分修正目标用户的评分,以减小因矩阵分解导致用户信息丢失造成的误差.利用MovieLens 100K数据集进行的实验结果表明,与传统的基于用户的协同过滤算法、基于K-均值聚类的协同过滤算法和隐语义模型(LFM)算法相比,本文提出的算法能够有效提高推荐结果的准确性. 展开更多
关键词 个性化推荐 SVD算法 二分K-均值聚类算法 协同过滤 矩阵分解
在线阅读 下载PDF
Integrity-Management Characteristics and Efficiency Evaluation of Oil and Gas Pipelines
16
作者 Zhang Xiaodong Sun Jiazheng +1 位作者 Fu Yong Lei Shaojuan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第4期139-150,共12页
Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based ... Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based on integritymanagement data published by the US Pipeline and Hazardous Materials Safety Administration, this study applied the k-means clustering and data envelopment analysis(DEA) methods to both explore the characteristics of pipeline-integrity management and evaluate its efficiency. The k-means clustering algorithm was found to be scientifically valid for classifying pipeline companies as either low-, medium-, or high-difficulty companies according to their integrity-management requirements. Regardless of a pipeline company's classification, equipment failure was found to be the main cause of pipeline failure. In-line inspection corrosion and dent tools were the two most-used tools for pipeline inspection. Among the types of repair, 180-day condition repairs were a key concern for pipeline companies. The results of the DEA analysis indicate that only three out of 34 companies were deemed to be DEA-effective. To improve the effectiveness of pipeline integrity management, we propose targeted directions and scales of improvement for non-DEA-effective companies. 展开更多
关键词 Integrity management k-means clustering algorithm data envelopment analysis safety management
在线阅读 下载PDF
基于改进YOLOv5算法的马铃薯表皮缺陷程度检测方法研究 被引量:1
17
作者 田博宇 李存阳 +4 位作者 王孟凡 宋超 郑运昌 乔福宇 夏孟尧 《科学技术创新》 2023年第11期123-126,共4页
马铃薯作为一种产量可观、营养丰富的农作物,已经成为全球不可或缺的食物之一。但恰恰因为其体量庞大的特点在对马铃薯进行分类出售时需要耗费大量的人力和物力以及时间。为了实现对马铃薯品质的自动分类,解放人力物力,提升效率。我们... 马铃薯作为一种产量可观、营养丰富的农作物,已经成为全球不可或缺的食物之一。但恰恰因为其体量庞大的特点在对马铃薯进行分类出售时需要耗费大量的人力和物力以及时间。为了实现对马铃薯品质的自动分类,解放人力物力,提升效率。我们提出了一种基于计算机视觉及改进特征融合YOLOv5s算法的马铃薯表皮缺陷程度检测方法,我们把YOLOv5s的颈部网络中的特征金字塔网络结构替换为加权特征金字塔网络结构,采用这种双向加权特征网络能够更好的提取特征信息,更好的融合特征。并且我们加入了二分K均值聚类算法,该算法的加入极大提升了检测时的收敛速度和精度,并且有效避免了K均值聚类算法因初始聚类点质心选取不适所带来的影响。经过我们的实验表明,本项技术能够对马铃薯表皮检测的正确率达到98%。由此可见,本项基于改进YOLOv5算法的马铃薯表皮缺陷程度检测方法可行性较强,可以用于市场对马铃薯检测分类。 展开更多
关键词 YOLOv5 马铃薯表皮缺陷检测 改进特征融合 二分K均值聚类算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部