Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ...The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.展开更多
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical...Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.展开更多
A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANE...A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANET security,network longevity,and energy efficiency.Hence,selecting an appropriate cluster.The cluster’s head further boosts the network’s energy effectiveness.As a result,a Hybrid Swallow Swarm Optimisation-Memetic Algorithm(SSO-MA)is suggested to develop the energy efficiency&of the MANET network.Then,to secure the network Abnormality Detection System(ADS)is proposed.The MATLAB-2021a platform is used to implement the suggested technique and conduct the analysis.In terms of network performance,the suggested model outperforms the current Genetic Algorithm,Optimised Link State Routing protocol,and Particle Swarm Optimisation techniques.The performance of the model has a minimum delay in the range of 0.82 seconds and a Packet Delivery Ratio(PDR)of 99.82%.Hence,the validation shows that the Hybrid SSO-MA strategy is superior to the other approaches in terms of efficiency.展开更多
The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind powe...The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.展开更多
In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to div...In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements.展开更多
Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based ...Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based on integritymanagement data published by the US Pipeline and Hazardous Materials Safety Administration, this study applied the k-means clustering and data envelopment analysis(DEA) methods to both explore the characteristics of pipeline-integrity management and evaluate its efficiency. The k-means clustering algorithm was found to be scientifically valid for classifying pipeline companies as either low-, medium-, or high-difficulty companies according to their integrity-management requirements. Regardless of a pipeline company's classification, equipment failure was found to be the main cause of pipeline failure. In-line inspection corrosion and dent tools were the two most-used tools for pipeline inspection. Among the types of repair, 180-day condition repairs were a key concern for pipeline companies. The results of the DEA analysis indicate that only three out of 34 companies were deemed to be DEA-effective. To improve the effectiveness of pipeline integrity management, we propose targeted directions and scales of improvement for non-DEA-effective companies.展开更多
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
文摘The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.
文摘Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.
文摘A decentralized network made up of mobile nodes is termed the Mobile Ad-hoc Network(MANET).Mobility and a finite battery lifespan are the two main problems with MANETs.Advanced methods are essential for enhancing MANET security,network longevity,and energy efficiency.Hence,selecting an appropriate cluster.The cluster’s head further boosts the network’s energy effectiveness.As a result,a Hybrid Swallow Swarm Optimisation-Memetic Algorithm(SSO-MA)is suggested to develop the energy efficiency&of the MANET network.Then,to secure the network Abnormality Detection System(ADS)is proposed.The MATLAB-2021a platform is used to implement the suggested technique and conduct the analysis.In terms of network performance,the suggested model outperforms the current Genetic Algorithm,Optimised Link State Routing protocol,and Particle Swarm Optimisation techniques.The performance of the model has a minimum delay in the range of 0.82 seconds and a Packet Delivery Ratio(PDR)of 99.82%.Hence,the validation shows that the Hybrid SSO-MA strategy is superior to the other approaches in terms of efficiency.
基金supported by the China Datang Corporation project“Study on the performance improvement scheme of in-service wind farms”,the Fundamental Research Funds for the Central Universities(2020MS021)the Foundation of State Key Laboratory“Real-time prediction of offshore wind power and load reduction control method”(LAPS2020-07).
文摘The simulation of wind power time series is a key process in renewable power allocation planning,operation mode calculation,and safety assessment.Traditional single-point modeling methods discretely generate wind power at each moment;however,they ignore the daily output characteristics and are unable to consider both modeling accuracy and efficiency.To resolve this problem,a wind power time series simulation model based on typical daily output processes and Markov algorithm is proposed.First,a typical daily output process classification method based on time series similarity and modified K-means clustering algorithm is presented.Second,considering the typical daily output processes as status variables,a wind power time series simulation model based on Markov algorithm is constructed.Finally,a case is analyzed based on the measured data of a wind farm in China.The proposed model is then compared with traditional methods to verify its effectiveness and applicability.The comparison results indicate that the statistical characteristics,probability distributions,and autocorrelation characteristics of the wind power time series generated by the proposed model are better than those of the traditional methods.Moreover,modeling efficiency considerably improves.
基金Supported by the National Natural Science Foundation of China(91016004)
文摘In order to solve cruise missile route planning problem for low-altitude penetration , a hy- brid particle swarm optimization ( HPSO ) algorithm is proposed. Firstly, K-means clustering algo- rithm is applied to divide the particle swarm into multiple isolated sub-populations, then niche algo- rithm is adopted to make all particles independently search for optimal values in their own sub-popu- lations. Finally simulated annealing (SA) algorithm is introduced to avoid the weakness of PSO algo- rithm, which can easily be trapped into the local optimum in the search process. The optimal value obtained by every sub-population search corresponds to an optimal route, multiple different optimal routes are provided for cruise missile. Simulation results show that the HPSO algorithm has a fast convergence rate, and the planned routes have flat ballisticpaths and short ranges which meet the low-altitude penetration requirements.
基金funded by the National Natural Science Foundation of China (Grant No. 71871018)。
文摘Pipeline integrity is a cornerstone of the operation of many industrial systems, and maintaining pipeline integrity is essential for preventing economic losses and ecological damage caused by oil and gas leaks. Based on integritymanagement data published by the US Pipeline and Hazardous Materials Safety Administration, this study applied the k-means clustering and data envelopment analysis(DEA) methods to both explore the characteristics of pipeline-integrity management and evaluate its efficiency. The k-means clustering algorithm was found to be scientifically valid for classifying pipeline companies as either low-, medium-, or high-difficulty companies according to their integrity-management requirements. Regardless of a pipeline company's classification, equipment failure was found to be the main cause of pipeline failure. In-line inspection corrosion and dent tools were the two most-used tools for pipeline inspection. Among the types of repair, 180-day condition repairs were a key concern for pipeline companies. The results of the DEA analysis indicate that only three out of 34 companies were deemed to be DEA-effective. To improve the effectiveness of pipeline integrity management, we propose targeted directions and scales of improvement for non-DEA-effective companies.