期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
1
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network long short-term memory network
在线阅读 下载PDF
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:9
2
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition Conditional Random Fields(CRF) bidirectional long short-term memory(BLSTM)
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
3
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
4
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus long short-term memory recurrentneural network
在线阅读 下载PDF
Preliminary abnormal electrocardiogram segment screening method for Holter data based on long short-term memory networks 被引量:1
5
作者 Siying Chen Hongxing Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期208-214,共7页
Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the m... Holter usually monitors electrocardiogram(ECG)signals for more than 24 hours to capture short-lived cardiac abnormalities.In view of the large amount of Holter data and the fact that the normal part accounts for the majority,it is reasonable to design an algorithm that can automatically eliminate normal data segments as much as possible without missing any abnormal data segments,and then take the left segments to the doctors or the computer programs for further diagnosis.In this paper,we propose a preliminary abnormal segment screening method for Holter data.Based on long short-term memory(LSTM)networks,the prediction model is established and trained with the normal data of a monitored object.Then,on the basis of kernel density estimation,we learn the distribution law of prediction errors after applying the trained LSTM model to the regular data.Based on these,the preliminary abnormal ECG segment screening analysis is carried out without R wave detection.Experiments on the MIT-BIH arrhythmia database show that,under the condition of ensuring that no abnormal point is missed,53.89% of normal segments can be effectively obviated.This work can greatly reduce the workload of subsequent further processing. 展开更多
关键词 ELECTROCARDIOGRAM long short-term memory network kernel density estimation MIT-BIH ARRHYTHMIA database
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:1
6
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于CNN-BiLSTM模型的平原型水库洪水预报研究 被引量:1
7
作者 赵忠峰 王雪妮 +3 位作者 晋华 郑婕 刘晓东 郭园 《水电能源科学》 北大核心 2025年第2期10-14,共5页
在平原型水库反推入库流量过程中,存在明显的噪声干扰,导致传统的洪水预报方法精度下降。对此,提出一种结合卷积神经网络(CNN)与双向长短期记忆神经网络(BiLSTM)的入库洪水预报模型,该模型采用CNN的卷积层挖掘入库洪水数据中的深层特征... 在平原型水库反推入库流量过程中,存在明显的噪声干扰,导致传统的洪水预报方法精度下降。对此,提出一种结合卷积神经网络(CNN)与双向长短期记忆神经网络(BiLSTM)的入库洪水预报模型,该模型采用CNN的卷积层挖掘入库洪水数据中的深层特征信息,并赋予不重要特征较低的权重,以便模型更加专注于对目标任务关键的特征信息。此外,利用BiLSTM处理流量序列中的长期依赖问题,通过其遗忘门有选择性地过滤掉权重较低的特征信息,实现对入库洪水过程的准确预测。最后,基于不同预见期评估所构建模型在安徽省合肥市大房郢水库入库洪水预报中的精准度。结果表明,4 h预见期下CNN-BiLSTM模型在入库洪水预报中具有更高的预报精度,相比BiLSTM模型和新安江(XAJ)模型,其确定性系数(D_(DC))分别提升9.9%、39.0%,均方根误差(R_(RMSE))和相对偏差(B_(BIAS))分别降低34.6%、17.1%和148.6%、20.6%。研究成果可为反推入库流量过程的平原型水库入库洪水预报提供新思路和技术支持。 展开更多
关键词 平原型水库 卷积神经网络 双向长短期记忆神经网络 入库洪水预报
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:1
8
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(GWO)算法 卷积神经网络(CNN) 双向长短期记忆(bilstm)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于AMCNN-BiLSTM-CatBoost的滚动轴承故障诊断模型研究
9
作者 袁建华 邵星 +1 位作者 王翠香 皋军 《噪声与振动控制》 北大核心 2025年第2期82-89,共8页
针对现有的轴承故障诊断模型存在的分类精度差、运算效率不高的问题,提出一种基于注意力机制-卷积神经网络-双向长短期记忆网络-CatBoost(AMCNN-BiLSTM-CatBoost)的滚动轴承故障诊断模型。首先,对原始振动信号进行下采样技术处理,然后... 针对现有的轴承故障诊断模型存在的分类精度差、运算效率不高的问题,提出一种基于注意力机制-卷积神经网络-双向长短期记忆网络-CatBoost(AMCNN-BiLSTM-CatBoost)的滚动轴承故障诊断模型。首先,对原始振动信号进行下采样技术处理,然后将经过下采样后的振动信号作为模型输入,通过3个不同的卷积模块提取特征,并使用通道注意力模块对提取的特征进行加权融合,然后将经过加权融合后的数据输入到双向长短期记忆网络中进一步地提取时序特征信息,最后输入到CatBoost中进行故障分类。经过实验表明,该模型不仅能够保证故障诊断的高准确率,还可以大大缩短网络的训练时间。 展开更多
关键词 故障诊断 卷积神经网络 双向长短期记忆网络 注意力机制 CatBoost 轴承
在线阅读 下载PDF
基于MLP和注意力机制BiLSTM的水电机组劣化趋势预测
10
作者 何一纯 李超顺 杨云鹏 《水电能源科学》 北大核心 2025年第3期177-181,100,共6页
水电站因工作时间长、内部结构复杂及运行环境等因素导致水电机组部件逐步老化受损,使电站运行存在重大安全隐患。水电机组劣化趋势预测能反映机组的运行安全,为此提出一种基于多层感知机(MLP)和注意力机制的双向长短时记忆(Attention-B... 水电站因工作时间长、内部结构复杂及运行环境等因素导致水电机组部件逐步老化受损,使电站运行存在重大安全隐患。水电机组劣化趋势预测能反映机组的运行安全,为此提出一种基于多层感知机(MLP)和注意力机制的双向长短时记忆(Attention-BiLSTM)相结合的劣化趋势预测模型(MLP-BiLSTM-Attention),首先将机组各工况数据与各个振摆数据进行相关性分析,获取关键部分之间的高度相关性;然后提取较高相关度特征值并输入改进后的MLP模型构建健康模型,利用实际机组运行数据与健康模型数据构建机组劣化度,劣化度信息输入Attention-BiLSTM预测网络实现劣化度预测;最后通过多种模型对比验证了所提模型的可行性和有效性。 展开更多
关键词 水轮机组 劣化预测 健康模型 多层感知机 双向长短时记忆网络
在线阅读 下载PDF
基于VMD-Transformer-BiLSTM的短期天然气负荷预测分析
11
作者 曹翔 邵必林 +2 位作者 文越 俞敏 刘春晖 《集成电路应用》 2025年第1期400-402,共3页
阐述针对短期天然气负荷波动性强和预测精度低的问题,提出一种基于变分模态分解(VMD)、Transformer和双向长短期记忆(BiLSTM)神经网络相结合的短期天然气负荷预测模型。实验结果表明,所提模型的预测精度比传统模型平均提高6.48%。
关键词 变分模态分解 Transformer 双向长短期记忆神经网络
在线阅读 下载PDF
基于小波变换和CNN-BiLSTM的电力电缆故障定位
12
作者 任晶晶 王耀辉 《通信电源技术》 2025年第7期240-242,共3页
文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升... 文章提出一种基于小波变换和卷积神经网络-双向长短期记忆(Convolutional Neural Network-Bidirectional Long Short Term Memory,CNN-BiLSTM)的电力电缆故障定位算法,结合小波变换的时频局部化特性和CNN与BiLSTM的深度学习能力,以提升故障定位的精准性。为验证提出算法的有效性,将True、BiLSTM、极值域均值模式分解(Extremum field Mean Mode Decomposition,EMMD)+小波变换算法与本文算法进行对比实验分析。实验结果表明,基于小波变换和CNN-BiLSTM的电力电缆故障定位算法能够将定位误差控制在0.02 km以内,显著提高了故障定位的精度。 展开更多
关键词 小波变换 卷积神经网络(CNN) 双向长短期记忆(bilstm) 电力电缆故障定位
在线阅读 下载PDF
基于变分自编码器和CNN-BiLSTM的网络入侵检测模型研究
13
作者 韩英 《佳木斯大学学报(自然科学版)》 2025年第4期19-22,共4页
针对当前入侵检测手段存在的检测效率低、误报频繁及检测周期长等挑战,研究探索了一种新方法。该方法将变分自编码器、一维卷积神经网络与双向长短期记忆网络相结合,构建的新模型旨在提升网络入侵的检测效能。在消融实验中,实验结果发... 针对当前入侵检测手段存在的检测效率低、误报频繁及检测周期长等挑战,研究探索了一种新方法。该方法将变分自编码器、一维卷积神经网络与双向长短期记忆网络相结合,构建的新模型旨在提升网络入侵的检测效能。在消融实验中,实验结果发现随着模型丰富度的提高,模型的准确率从71.8%升至84.1%,精确率从86.9%升至97.2%,召回率从65.1%升至73.8%。而在类别攻击检测上,实验结果发现研究所提模型在DOS,Fuzzy,Gear,RPM攻击上,其精确率分别为99.99%,99.99%,99.98%和99.96%,均优于其他两种模型。实验结果表明,该模型可良好应用网络入侵检测。 展开更多
关键词 变分自编码器 卷积神经网络 双向长短期记忆网络 网络入侵检测
在线阅读 下载PDF
基于GCN-BiLSTM-attention融合模型的气温预测研究
14
作者 王玉洁 王倩影 《现代信息科技》 2025年第9期53-56,共4页
针对气象时序数据规模和维度剧增,现有模型对数据信息利用率不足、训练时间较长、预测精度不高和泛化能力弱等问题,提出一种基于图卷积神经网络(GCN)和融入注意力机制的双向长短期记忆网络(BiLSTM-attention)模型对气象数据进行预测。... 针对气象时序数据规模和维度剧增,现有模型对数据信息利用率不足、训练时间较长、预测精度不高和泛化能力弱等问题,提出一种基于图卷积神经网络(GCN)和融入注意力机制的双向长短期记忆网络(BiLSTM-attention)模型对气象数据进行预测。该模型在预测安徽省铜陵气象站未来连续一周的气温时,平均RMSE误差为1.88,平均MSE为1.64,与其他模型相比精度最高,同时在预测四个代表区域的气温时,各区域的误差相差不大,证明了该模型泛化性能好,预测准确度高。 展开更多
关键词 双向长短期记忆神经网络 图卷积神经网络 注意力机制 气温预测
在线阅读 下载PDF
CPO-BiLSTM模型在短时交通流预测中的应用
15
作者 庄伟卿 余晗彧 《交通科技与经济》 2025年第1期1-7,共7页
短时交通流预测是智能交通系统的核心,可以有效减缓交通拥堵、提升应急响应效率。为进一步提高短时交通流量的预测精度,提出一种基于冠豪猪优化算法-双向长短期记忆网络(CPO-BiLSTM)的组合模型。该模型利用冠豪猪优化算法(CPO)的动态适... 短时交通流预测是智能交通系统的核心,可以有效减缓交通拥堵、提升应急响应效率。为进一步提高短时交通流量的预测精度,提出一种基于冠豪猪优化算法-双向长短期记忆网络(CPO-BiLSTM)的组合模型。该模型利用冠豪猪优化算法(CPO)的动态适应和全局均衡特性对双向长短期记忆网络(BiLSTM)的超参数进行寻优赋值,进而提升模型的泛化能力与训练效率。采用公路交通流数据集,将CPO-BiLTM模型与其他预测模型进行训练和测试比对分析,结果表明CPO-BiLSTM拥有更好的时间序列数据拟合能力,其平均绝对误差为16.8982、均方根误差为23.4424、决定系数为0.98229、剩余预测偏差为7.5159、平均绝对百分比误差为3.4243%,均为最优项,说明该模型能够有效提高预测的准确度和可靠性。 展开更多
关键词 公路交通 智能交通系统 短时交通流预测 冠豪猪优化算法 双向长短期记忆网络
在线阅读 下载PDF
基于VMD-FE-CNN-BiLSTM的短期光伏发电功率预测 被引量:4
16
作者 姜建国 杨效岩 毕洪波 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期462-473,共12页
为提高光伏功率的预测精度,提出一种变分模态分解(VMD)、模糊熵(FE)、卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的光伏功率组合预测模型。该方法首先采用VMD将原始光伏序列数据分解成多个子序列,从而减少随机波动分量和噪声... 为提高光伏功率的预测精度,提出一种变分模态分解(VMD)、模糊熵(FE)、卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的光伏功率组合预测模型。该方法首先采用VMD将原始光伏序列数据分解成多个子序列,从而减少随机波动分量和噪声干扰对预测模型的影响,通过FE对每个子序列进行重组,使用一维CNN的局部连接及权值共享提取不同分量的特征,将CNN输出的特征融合并输入到BiLSTM模型中;利用BiLSTM模型建立历史数据之间的时间特征关系,得到光伏发电功率预测结果。与BiLSTM、CNN-BiLSTM、EEMD-CNN-BiLSTM、VMD-CNN-BiLSTM这4种模型进行比较,该文提出的VMD-FE-CNN-BiLSTM模型在光伏发电功率预测中具有较高的精确度和稳定性,满足光伏发电短期预测的要求。 展开更多
关键词 变分模态分解 卷积神经网络 特征提取 模糊熵 光伏发电功率 预测 双向长短期记忆网络
在线阅读 下载PDF
基于VMD-BiLSTM-WOA的短期风电功率预测 被引量:8
17
作者 史加荣 王双馨 《陕西科技大学学报》 北大核心 2024年第1期177-185,共9页
风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term... 风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term Memory Network, BiLSTM)以及鲸鱼优化算法(Whale Optimization Algorithm, WOA)的混合深度学习模型,以用于短期风电功率预测.首先,VMD将原始风电功率分解为多个子模态,有效减少了序列的波动性;然后对每个子模态分别建立BiLSTM模型,使用WOA对BiLSTM中的参数进行优化,以提高混合模型的效率和预测性能;最后将各个子模型的结果叠加得到最终预测结果.在实验中通过建立不同的比较模型来说明改进策略的有效性和优越性,结果表明所提的混合模型在风电功率预测中具有较高的预测精度. 展开更多
关键词 风电功率 变分模态分解 双向长短期记忆网络 鲸鱼优化 长短期记忆网络
在线阅读 下载PDF
基于RF-BiLSTM模型的河流水质预测 被引量:4
18
作者 兰小机 贺永兰 武帅文 《长江科学院院报》 CSCD 北大核心 2024年第7期57-63,71,共8页
水环境中过量的氮、磷和高锰酸盐会对流域造成严重污染,准确预测这三类指标的含量对流域污染治理具有重要意义。然而,现有的模型预测精度低,输入因子的选择缺乏数理依据。基于此,以邕江为研究区域,提出一种RF-BiLSTM的混合网络模型。该... 水环境中过量的氮、磷和高锰酸盐会对流域造成严重污染,准确预测这三类指标的含量对流域污染治理具有重要意义。然而,现有的模型预测精度低,输入因子的选择缺乏数理依据。基于此,以邕江为研究区域,提出一种RF-BiLSTM的混合网络模型。该模型具有利用RF算法提取水质指标最优特征和利用BiLSTM模型提取输入数据的时间特征的优势,采用先降维后预测的方式对TN、TP和COD Mn进行预测,并将深度学习中的CNN、LSTM、BiLSTM和RF-LSTM作为基准模型与本研究所提模型作对比研究。研究结果表明,本研究模型预测TN、TP和COD Mn的平均绝对百分比误差(MAPE)分别达到了4.330%、6.781%和7.384%,均低于其他基准模型,预测结果具有较高的准确性和实用性,可为水环境的污染治理提供有效的技术支持。 展开更多
关键词 水质预测 特征选择 随机森林 双向长短时记忆神经网络 深度学习
在线阅读 下载PDF
基于TCN-BiLSTM-Attention-ESN的光伏功率预测 被引量:1
19
作者 时培明 郭轩宇 +3 位作者 杜清灿 许学方 贺长波 李瑞雄 《太阳能学报》 EI CAS CSCD 北大核心 2024年第9期304-316,共13页
针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳... 针对光伏发电功率随机性强、难以准确预测的问题,提出一种基于时间卷积网络(TCN)、双向长短期记忆网络(BiLSTM)和回声状态网络(ESN)的组合预测方法。首先,使用自适应噪声完备集合经验模态分解(CEEMDAN)将功率数据分解为一系列相对平稳、不同波动模式的子功率序列;再将分解重构后的功率序列和其他特征序列输入到TCN-BiLSTM-Attention-ESN组合模型中,其中TCN-BiLSTM-Attention用于提取光伏序列波动特征并构建时空特征向量;最后,将所提取的时空特征向量输入ESN获得预测结果。采用新疆某光伏电站的光伏功率数据进行验证,结果表明与时下先进的预测方法相比,所提方法具有更高的预测精度,有助于提升光伏发电占比,保障电力系统平衡和运行安全。 展开更多
关键词 光伏发电功率 预测 神经网络 回声状态网络 时间卷积网络 双向长短期记忆网络
在线阅读 下载PDF
基于改进BiLSTM网络的地铁车轮磨耗预测模型 被引量:1
20
作者 朱爱华 白杨 +3 位作者 白堂博 王雅莉 张财胜 李安琰 《都市快轨交通》 北大核心 2024年第3期82-89,共8页
针对地铁车轮磨耗数据时间跨度较长引起的长期依赖问题,为了进一步提升预测精度,提出一种将麻雀搜索算法(sparrow search algorithm,SSA)优化双向长短期记忆网络(bidirectional long short term memory,Bi LSTM)的改进BiLSTM(SSA-BiLSTM... 针对地铁车轮磨耗数据时间跨度较长引起的长期依赖问题,为了进一步提升预测精度,提出一种将麻雀搜索算法(sparrow search algorithm,SSA)优化双向长短期记忆网络(bidirectional long short term memory,Bi LSTM)的改进BiLSTM(SSA-BiLSTM)网络模型,用于地铁车轮磨耗预测。首先,利用麻雀搜索算法对双向长短期记忆网络算法的神经元个数、迭代次数、输入批量和学习率等超参数在给定范围内进行寻优,得到参数最优值;然后,以参数最优值来构建改进BiLSTM网络模型,对车轮磨耗进行预测分析;最后,以车轮踏面磨耗和轮缘磨耗作为研究对象,将某地铁1车厢1号车轮的现场实测历史磨耗数据作为输入,对该模型进行训练及验证分析,并与多层感知机(multilayer perceptron,MLP)、LSTM、BiLSTM以及SSA-LSTM模型的预测结果进行对比。研究结果表明:SSA-Bi-LSTM模型的车轮磨耗预测精度更高,与LSTM、BiLSTM以及SSA-LSTM网络模型相比,踏面磨耗的平均绝对百分误差(mean absolute percentage error,MAPE)分别降低了13.28%、10.32%、1.47%,轮缘磨耗分别降低了9.5%、0.46%、0.02%;分别对同一地铁2号、4号车厢的1号位置车轮磨耗进行预测,并与磨耗实测数据进行对比,踏面磨耗的平均绝对百分比误差分别为1.34%、1.42%,轮缘磨耗的平均绝对百分比误差分别为0.18%、0.19%,验证了本文所提模型具有良好的泛化性,为地铁轮对智能化管理提供理论支持,延长车轮使用寿命。 展开更多
关键词 地铁 磨耗预测 麻雀搜索算法 双向长短期记忆网络
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部