期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
一种基于元学习的改进YOLO钢管表面缺陷小样本检测模型 被引量:2
1
作者 李凌波 田彦 +1 位作者 江旭东 董宝力 《机电工程》 北大核心 2025年第5期985-993,共9页
针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取... 针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取了特征图的判别能力;然后,为了提高特征融合能力并降低计算复杂度,通过加权双向特征金字塔网络(BiFPN)结构优化了特征提取器的颈部网络,平衡了YOLO-SBN模型的有效性和效率;最后,采用归一化注意力模块(NAM)优化权重调整了模块,增强了浅层缺陷特征的模型表达,并基于这些增强的特征进行了检测;使用金属表面热轧缺陷公开数据集NEU-DET验证了YOLO-SBN模型的算法性能。研究结果表明:对于小样本缺陷检测,YOLO-SBN模型在平均准确率(mAP)方面提高了4.1%;在新类缺陷样本规模数量为50的小样本情况下,改进后的检测模型对新类数据适应性最强。由此可见,该YOLO-SBN模型在提高检测精度和提升模型泛化能力方面具有一定优势。 展开更多
关键词 小样本目标检测 表面缺陷 元学习 特征网络 归一化注意力模块 平均准确率 双向特征金字塔网络(bifpn)
在线阅读 下载PDF
多尺度和多层级特征融合的人体姿态估计 被引量:2
2
作者 王燕妮 胡敏 +2 位作者 韩世鹏 陈艺瑄 吕昊 《计算机工程与应用》 北大核心 2025年第6期199-209,共11页
人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(m... 人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(multi-scale and multi-level network,MSLNet)。采用高分辨率网络(high-resolution network,HRNet)作为主干,通过跨尺度信息交互,实现不同分辨率特征图之间的信息交换,获取同时包含细粒度和粗粒度的姿态特征;引入期望最大化注意力-加权双向特征金字塔网络(expectation maximization attention-bidirectional feature pyramid network,EMA-BiFPN),实现多尺度特征融合后的多层级特征聚合,从局部到全局捕捉人体姿态的细节和关联信息;设计由残差结构组成的关键点检测头,完成输出特征的最终融合并提升人体关键点检测准确率。实验结果表明,MSLNet在COCO和MPII数据集上分别取得了75.8%和91.1%的准确率,实现了最优精度,充分验证了MSLNet能够融合尺度和层级之间的互补特征,进而提升人体姿态估计精度。 展开更多
关键词 高分辨率网络(HRNet) 人体姿态估计 期望最大化注意力 双向特征金字塔网络 特征融合
在线阅读 下载PDF
基于改进YOLOv5的小目标交通标志检测算法
3
作者 李牧 陶启婷 柯熙政 《计算机应用》 北大核心 2025年第S1期239-244,共6页
交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法... 交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法。首先,引入空间到深度卷积(SPD-Conv)对特征图进行下采样,有效避免小目标信息丢失,提高小目标敏感度。其次,基于加权双向特征金字塔网络(BiFPN)改进颈部网络,添加跨层连接以融合多尺度特征。之后,增加小目标检测层,增强小目标检测能力。最后,采用SIoU(Shape-aware Intersection over Union)损失函数,关注真实框与预测框的角度信息。实验结果表明,改进后的算法在中国交通标志检测数据集(CCTSDB2021)上的平均精度均值(mAP)达到83.5%,相较于原YOLOv5提升了7.2个百分点,检测速度满足实时性要求。 展开更多
关键词 小目标检测 YOLOv5 交通标志检测 SPD-Conv bifpn
在线阅读 下载PDF
基于改进YOLOX的隧道火灾检测算法
4
作者 马庆禄 邱高建 白锋 《中国安全科学学报》 北大核心 2025年第4期28-34,共7页
针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字... 针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字塔网络(BiFPN)增强特征提取和融合能力,优化α-交并比(IoU)损失函数,以提高对轮廓特征不明显的隧道初期烟雾火焰的检测精度;在现有公开数据集不足的情况下,通过网络采集、模拟试验和扩充现有数据集,构建隧道火灾数据集,在包含真实场景和模拟场景的自建隧道火灾数据集上进行验证。结果表明:相比于原始YOLOX模型,改进后的算法均值平均精度(mAP@0.5)提高1.89%,mAP@0.5~0.95提高0.88%,精确率提高4.57%,召回率提高5.45%,改进后的算法能够实现更优的检测性能。 展开更多
关键词 隧道火灾 YOLOX 火灾检测 归一化注意力模块(NAM) 加权双向特征金字塔网络(bifpn)
在线阅读 下载PDF
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
5
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:1
6
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-Pose GhostNetV2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
RO-YOLOv9车辆行人检测算法
7
作者 廖炎华 万学俊 +1 位作者 赵周洲 潘文林 《计算机工程与应用》 北大核心 2025年第11期144-155,共12页
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a... 针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv9 小目标检测 双向与自适应尺度融合特征金字塔网络(BiASF-FPN) OR-RepN4 Shape-NWD
在线阅读 下载PDF
基于改进YOLOv7-tiny的绝缘子缺陷检测网络
8
作者 韩兴宇 陈为真 《现代电子技术》 北大核心 2025年第16期105-112,共8页
现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特... 现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特征交互(AIFI)来处理高维特征,从而降低计算量;其次,使用双向加权路径特征金字塔网络(BiFPN)进行特征融合,并对下采样模块进行改进,增强网络的感知能力;最后,使用Focal-DIoU损失函数提高锚框质量。结果表明,与基线模型相比,IDD-Net的平均精度均值提高4.1%,精确率和召回率分别提高2.4%和6.5%,参数量和浮点运算量分别减少5.8%和2.3%,对于闪络缺陷的平均精度提高11.2%。由此说明所提方法参数量较小,性能更优异,鲁棒性更强。 展开更多
关键词 YOLOv7-tiny 绝缘子缺陷检测 基于注意力的尺度内特征交互 双向加权路径特征金字塔网络 MC下采样模块 轻量级网络
在线阅读 下载PDF
基于CA-BIFPN的交通标志检测模型 被引量:10
9
作者 郎斌柯 吕斌 +1 位作者 吴建清 吴瑞年 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2023年第3期335-343,共9页
正确、快速的交通标志检测可为自动驾驶领域的环境感知提供重要信息.针对目前交通标志检测识别率低及多种交通标志检测存在的误检漏检等问题,提出一种协调注意力-双向特征金字塔网络(coordinate attention-bidirectional feature pyrami... 正确、快速的交通标志检测可为自动驾驶领域的环境感知提供重要信息.针对目前交通标志检测识别率低及多种交通标志检测存在的误检漏检等问题,提出一种协调注意力-双向特征金字塔网络(coordinate attention-bidirectional feature pyramid network,CA-BIFPN)交通标志检测模型.该模型将YOLOv5(you only look once version 5)模型和协调注意力(coordinate attention,CA)机制相结合,引入双向特征金字塔网络(bidirectional feature pyramid network,BIFPN),通过跳连特征融合提高模型的多尺度语义特征利用效率,在提高小目标物体检测效率的同时,也使交通标志的检测精度得到提高.以交通标志数据集TT100K为测试对象进行实验验证,结果表明,与SSD(single shot multibox detector)模型和YOLOv5模型相比,CABIFPN交通标志检测模型的检测准确率分别提高4.5%和1.3%,验证模型有效. 展开更多
关键词 人工智能 交通标志检测 深度学习 小目标检测 协调注意力 双向特征金字塔网络
在线阅读 下载PDF
融合CA-BiFPN的轻量化人体姿态估计算法 被引量:4
10
作者 皮骏 牛厚兴 高志云 《图学学报》 CSCD 北大核心 2023年第5期868-878,共11页
针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络... 针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络,旨在以更少的计算资源输出更有效的特征信息,提升网络检测速度,缓解网络冗余的问题;在主干网络中结合轻量化的坐标注意力CA模块,将图片的人体关键点位置信息聚集到通道上,增强特征提取能力;引入加权双向特征金字塔网络,提升模型的特征融合能力,平衡不同尺度的特征信息;最后将CIoU损失函数替换为Wise-Io U(WIo U),进一步提升模型对人体关键点回归的性能。结果表明,在COCO2017人体关键点数据集上,优化后的网络模型参数量降低26.2%,计算量降低30.0%,平均精确度提升1.7个百分点、平均召回率提升2.7个百分点,能够满足实时性的效果,验证了所提模型的可行性和有效性。 展开更多
关键词 人体姿态估计 轻量化 坐标注意力 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
基于改进Faster R-CNN的零食包装盒表面缺陷检测 被引量:1
11
作者 巩雪 孙雪刚 +2 位作者 褚洋洋 崔功卓 李欣妍 《包装工程》 CAS 北大核心 2024年第23期232-240,共9页
目的针对现有食品包装盒表面缺陷检测方法存在的复杂背景下小目标缺陷检测难、漏检率高、检测精度低等问题,选择生活中常见的绿豆糕零食包装盒作为检测对象,提出一种基于改进Faster R-CNN的绿豆糕包装盒表面缺陷检测方法。方法以Faster ... 目的针对现有食品包装盒表面缺陷检测方法存在的复杂背景下小目标缺陷检测难、漏检率高、检测精度低等问题,选择生活中常见的绿豆糕零食包装盒作为检测对象,提出一种基于改进Faster R-CNN的绿豆糕包装盒表面缺陷检测方法。方法以Faster R-CNN算法架构为基础,以Swin Transformer V2-T为特征提取主干,初步提高算法对包装盒缺陷特征的提取能力;结合加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,BiFPN)自适应调节每个尺度特征图的权重并对不同尺寸的特征进行多尺度融合,以提高识别的准确率;通过ROIAlign结合ECA注意力机制替换ROIPooling,去除2次量化误差并进一步优化算法对包装盒缺陷的检测能力。结果本检测方法可准确提取目标缺陷,绿豆糕包装盒表面的4种缺陷的检测平均精确率(Average Precision,AP)较改进前分别提高19.66、12.96、14.56、18.86百分点,同时平均精确率均值(mean Average Precision,mAP)在IoU为0.5上较改进前提高了15.76百分点。结论改进后的模型为Faster R-CNN在食品包装盒智能化生产上的应用了提供有益的参考和经验。 展开更多
关键词 零食包装盒 缺陷检测 Faster R-CNN 加权双向特征金字塔网络(bifpn) Swin TransformerV2
在线阅读 下载PDF
面向配电柜字符识别的YOLOv7-MSBP目标定位算法 被引量:2
12
作者 王呈 王炀 荣英佼 《计算机应用》 CSCD 北大核心 2024年第10期3191-3199,共9页
通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch... 通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。 展开更多
关键词 YOLOv7算法 仪表识别 注意力机制 双向特征金字塔 机器视觉
在线阅读 下载PDF
基于改进YOLOv5s的田间移动障碍物检测 被引量:4
13
作者 侯艳林 艾尔肯·亥木都拉 李贺南 《现代电子技术》 北大核心 2024年第6期171-178,共8页
为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和... 为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和计算复杂度,提高推理速度,将YOLOv5s网络模型中的卷积模块和C3模块替换为Ghost卷积和C3Ghost模块;第二,为了弥补模型参数量减少所造成的精度下降的损失,提升对目标的检测能力,在主干网络输出的特征层中引入CBAM注意力机制;第三,采用BiFPN特征金字塔结构,实现多尺度特征加权融合。实验结果表明,YOLOv5s模型的参数量为7.02×106,计算复杂度为15.8GB,平均检测精度为94%,生成权重文件大小为13.7MB,单幅图像的检测速度为71.43 f/s;改进后的模型参数量为4.04×106,下降了42.45%,计算复杂度缩减为8.5 GB,平均检测精度达到了93.2%,仅仅下降了0.8%,权重文件大小为8.1 MB,单幅图像的检测速度为77.52 f/s。以上数据证明,改进后的模型能够满足对田间移动型障碍物的实时检测,且更加易于部署到移动端设备。 展开更多
关键词 移动型障碍物 YOLOv5s 无人农机 目标检测 CBAM注意力机制 双向特征金字塔网络(bifpn)
在线阅读 下载PDF
基于改进YOLOv5的船舶多尺度SAR图像检测算法 被引量:9
14
作者 李生辉 李晓飞 +1 位作者 宋璋晗 王必祥 《数据采集与处理》 CSCD 北大核心 2024年第1期120-131,共12页
针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-dir... 针对复杂场景下合成孔径雷达(Synthetic aperture radar, SAR)图像船舶目标像素尺度差异大和船舶密集排列造成目标漏检的问题,提出一种基于改进YOLOv5的船舶多尺度SAR图像检测算法。对于YOLOv5的颈部网络,采用双向特征金字塔结构(Bi-directional feature pyramid network, BiFPN)提升网络多尺度特征融合能力,并在其自下而上的特征融合支路中,基于深度可分离卷积(Depthwise separable convolution, DSC)和通道MLP构建EC-MLP(Enhanced channel-MLP)模块,从而丰富语义信息,提供更充分的船舶目标上下文特征;引入全局注意力机制(Global attention mechanism, GAM),使网络对输入特征进行针对性提取并运算,减少网络的信息丢失;此外,使用SIoU损失函数进一步提高网络的训练收敛速度和检测精度。在SSDD和HRSID数据集上与其他8种方法(Faster R-CNN、Libra R-CNN、FCOS、YOLOv5s、PP-YOLOv2、YOLOX-s、PP-YOLOE-s和YOLOv7-tiny)进行对比实验。实验结果表明:改进后算法在SSDD数据集上的AP50达到了96.7%,在HRSID数据集上AP50达到了95.6%,优于对比方法。 展开更多
关键词 合成孔径雷达 船舶目标检测 双向特征金字塔网络 深度可分离卷积 全局注意力机制
在线阅读 下载PDF
基于改进YOLOv5s的鱼雷检测算法 被引量:1
15
作者 崔陈 甘文洋 朱大奇 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第1期35-41,79,共8页
针对目前深海鱼雷检测中存在检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5s的鱼雷检测算法。使用可分离视觉变换器(SepViT)模块来替换主干层网络最后一层中的C3模块,增强骨干网络与全局信息的联系以及鱼雷特征的提取,降低漏... 针对目前深海鱼雷检测中存在检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5s的鱼雷检测算法。使用可分离视觉变换器(SepViT)模块来替换主干层网络最后一层中的C3模块,增强骨干网络与全局信息的联系以及鱼雷特征的提取,降低漏检率和误检率。在YOLOv5s网络模型的主干层网络中引入ECA注意力机制,提高复杂的深海环境下检测模型对于鱼雷深层次关键特征的提取能力,同时避免了降维,以有效的方式捕捉跨通道的交互信息,以此来提高鱼雷检测模型的检测精度。将网络模型颈部层中的路径聚合网络(PANet)替换为双向特征金字塔网络(BiFPN),采用跨尺度连接去除路径聚合网络(PANet)中对特征融合贡献较小的节点,实现多尺度特征的快速融合,提高鱼雷检测模型的检测效率。实验结果表明:改进的YOLOv5s鱼雷检测算法的均值平均精度(mAP)达到了97.0%,较原来的YOLOv5s算法提高了3.7%,检测速度达83 FPS,有效地提高了深海鱼雷检测的精度和速度。 展开更多
关键词 鱼雷检测 YOLOv5s 深度学习 可分离视觉变换器 注意力机制 双向特征金字塔网络
在线阅读 下载PDF
基于YOLOP-L的多特征融合道路全景驾驶检测 被引量:1
16
作者 吕嘉璐 周力 巨永锋 《计算机科学》 CSCD 北大核心 2024年第S01期433-440,共8页
目前,驾驶员视角下的交通图像检测技术成为交通领域的重要研究方向,同时提取车辆、道路、交通标志等多种特征已经成为驾驶员理解道路信息多样性的亟需任务。以往研究已在单类目标检测的特征提取方面取得了长足进步,然而,这些研究不能很... 目前,驾驶员视角下的交通图像检测技术成为交通领域的重要研究方向,同时提取车辆、道路、交通标志等多种特征已经成为驾驶员理解道路信息多样性的亟需任务。以往研究已在单类目标检测的特征提取方面取得了长足进步,然而,这些研究不能很好地联合应用于其他区别较大的特征检测任务中,且融合训练过程中会损失个别特征检测的精度。针对驾驶员视野范围内道路信息多样且复杂的特点,本文提出了一种基于多特征融合训练的检测模型YOLOP-L,它能够同时对多种不同特征交通目标进行融合训练,同时保证单项检测任务的精度。首先,为了解决特征融合中语义信息表达不完整的问题,设计的SP-LNet模块通过FPN与双向特征网络结合实现网络更深层次的融合,使得提取的信息更完整,从而提升道路小目标的检测性能;其次,设计新的分割头深度可分离卷积,将语义信息与局部特征融合促使多特征融合的训练准确度与速度得到进一步提升;再次,体系中设计的GDL-Focal多类混合损失函数更专注于困难样本,可用于解决样本特征不平衡的问题。最后,对比实验表明:YOLOP-L相比原YOLOP网络运行的速度更快;在车辆目标检测任务下召回率提升了2.2%;在车道线检测任务下准确率提升2.8%,车道线IoU的值较HybridNets网络下降2.45%,但较YOLOP-L网络提升1.95%;在可行驶区域分割任务下其整体检测性能提升1.1%。结果表明,在具有挑战性的BDD100K数据集上,YOLOP-L可以在复杂场景下有效解决检测精度不足和分割缺失的问题,提高了车辆识别、车道线检测以及道路行驶区域联合训练的准确性和鲁棒性。 展开更多
关键词 全景驾驶 多特征融合 车辆检测 可行驶区域检测 车道线检测 双向特征金字塔
在线阅读 下载PDF
一种改进YOLOX_S的火焰烟雾检测算法 被引量:7
17
作者 谢康康 朱文忠 +1 位作者 肖顺兴 谢林森 《科学技术与工程》 北大核心 2024年第8期3298-3307,共10页
针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对... 针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对数据集采用Mosaic数据增强的方式,增加数据的多样性。其次对backbone部分采用swin-T骨干网络来代替原来的CSPDarkNet骨干网络,能够更好的捕捉不同尺度下的特征,有效地提升了目标检测的精度。然后对网络模型引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)特征融合网络,提高检测的效率和网络模型的适应性,在复杂背景下同样可以保持较高的检测精度。最后引入CA注意力机制来加强此算法的特征提取能力。经过对比实验表明,改进后的YOLOX_S的火焰烟雾检测算法具有较高准确性,其mAP@0.5(预测框与真实框重合程度的阈值为0.5时的平均检测精度)达到81.5%,相比原网络提高了5.3%。改进后的YOLOX_S网络模型在火焰烟雾检测方面具有更高准确性和更低的误报率。 展开更多
关键词 YOLOX swin transformer 加权双向特征金字塔网络(bifpn) 火焰烟雾检测 注意力机制
在线阅读 下载PDF
基于改进的Yolov5的无人机图像小目标检测 被引量:6
18
作者 何宇豪 易明发 +1 位作者 周先存 王冠凌 《智能系统学报》 CSCD 北大核心 2024年第3期635-645,共11页
为了解决无人机航拍图像小目标检测算法检测速度与精度无法兼顾的问题,在Yolov5的基础上,提出了针对于无人机图像小目标检测的Yolov5_GBCS算法。在新的算法中,添加一个额外的检测头,以便增强对小目标的特征融合效果;在主干网络中分别采... 为了解决无人机航拍图像小目标检测算法检测速度与精度无法兼顾的问题,在Yolov5的基础上,提出了针对于无人机图像小目标检测的Yolov5_GBCS算法。在新的算法中,添加一个额外的检测头,以便增强对小目标的特征融合效果;在主干网络中分别采用GhostConv卷积模块、GhostBottleneckC3模块替换部分Conv模块和C3模块用以提取丰富特征和冗余特征以提高模型效率;引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)结构,用以提高对小目标的检测精度;在主干网络和颈部网络中引入轻量化的卷积块注意力模块(convolutional block attention module,CBAM),关注重要特征并抑制不必要的特征,增强小目标特征表达能力;使用Soft-NMS算法来替换NMS,因此降低了小目标在密集场景下的漏检率。通过在VisDrone2019数据集上的实验结果表明,集成了所有改进的方法后的Yolov5_GBCS算法,不仅提高了检测精度,而且有效地提高了检测速度,模型的mAP从38.5%提高到43.2%,检测速度也从53 f/s提高到59 f/s。Yolov5_GBCS算法可以有效地实现无人机航拍图像中小目标识别。 展开更多
关键词 图像处理 GhostConv卷积模块 双向特征金字塔网络 卷积块注意力模块 Soft双向特征金字塔网络 轻量化模型 小目标检测 VisDrone数据集
在线阅读 下载PDF
面向拥挤行人检测的改进YOLOv7算法 被引量:7
19
作者 徐芳芯 樊嵘 马小陆 《计算机工程》 CAS CSCD 北大核心 2024年第3期250-258,共9页
针对拥挤行人检测场景下检测算法容易产生漏检与误检的问题,提出一种改进的YOLOv7拥挤行人检测算法。在骨干网络中引入BiFormer视觉变换器和改进的高效层聚合网络(RC-ELAN)模块,通过自注意力机制与注意力模块使骨干网络更多聚焦于被遮... 针对拥挤行人检测场景下检测算法容易产生漏检与误检的问题,提出一种改进的YOLOv7拥挤行人检测算法。在骨干网络中引入BiFormer视觉变换器和改进的高效层聚合网络(RC-ELAN)模块,通过自注意力机制与注意力模块使骨干网络更多聚焦于被遮挡行人的重要特征,有效缓解了目标特征缺失对检测造成的负面影响。采用基于双向特征金字塔网络思想的改进颈部网络,通过转置卷积和改进的Rep-ELAN-W模块使模型可以高效利用中低维特征图中的小目标特征信息,有效提升了模型的小目标行人检测性能。引入高效的完全交并比损失函数,使模型可以进一步收敛至更高精度。在含有大量小目标遮挡行人的WiderPerson数据集上的实验结果表明,与YOLOv7、YOLOv5、YOLOX算法相比,改进的YOLOv7算法的交并比阈值分别取0.5和0.5~0.95时的平均精准度提升了2.5和2.8、9.9和7.1、12.3和10.7个百分点,可较好地应用于拥挤行人检测场景。 展开更多
关键词 机器视觉 拥挤行人检测 注意力机制 YOLO系列算法 双向特征金字塔网络
在线阅读 下载PDF
面向带钢表面小目标缺陷检测的改进YOLOv7算法 被引量:6
20
作者 樊嵘 马小陆 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期303-308,316,共7页
带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可... 带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可重参数化卷积模块,以提升小目标特征的提取效率;采用改进的双向特征金字塔网络(bi-directional feature pyramid network,BiFPN)颈部网络替换原有的路径聚合网络(path aggregation network,PANet)颈部网络,实现对小目标缺陷特征的高效提纯;采用解耦检测头进行检测结果输出,使网络在训练时进一步收敛至更高精度。实验结果表明,改进后的YOLOv7算法在小目标带钢缺陷检测场景下检测精度领先YOLOv7算法4.3 AP50精度,领先YOLOv6算法5.0 AP50精度,领先YOLOX算法4.8 AP50精度,说明该算法可以较好地应用于小目标带钢缺陷检测。 展开更多
关键词 机器视觉 缺陷检测 YOLOv7算法 双向特征金字塔网络(bifpn) 注意力机制
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部